The most massive galaxies in clusters are already fully grown at z similar to 0.5

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465:2 (2017) 2101-2119

Authors:

LJ Oldham, RCW Houghton, RL Davies

Radial gradients in initial mass function sensitive absorption features in the Coma brightest cluster galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 465:1 (2017) 192-212

Authors:

S Zieleniewski, RCW Houghton, N Thatte, RL Davies, SP Vaughan

Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:1 (2017) 217-238

Authors:

SV White, Matthew Jarvis, E Kalfountzou, MJ Hardcastle, A Verma, JM Cao Orjales, J Stevens

Abstract:

In order to understand the role of radio-quiet quasars (RQQs) in galaxy evolution, we must determine the relative levels of accretion and star-formation activity within these objects. Previous work at low radio flux densities has shown that accretion makes a significant contribution to the total radio emission, in contrast with other quasar studies that suggest star formation dominates. To investigate, we use 70 RQQs from the Spitzer-Herschel Active Galaxy Survey. These quasars are all at z ∼ 1, thereby minimizing evolutionary effects, and have been selected to span a factor of ∼100 in optical luminosity, so that the luminosity dependence of their properties can be studied. We have imaged the sample using the Karl G. Jansky Very Large Array (JVLA), whose high sensitivity results in 35 RQQs being detected above 2σ. This radio data set is combined with far-infrared luminosities derived from grey-body fitting to Herschel photometry. By exploiting the far-infrared-radio correlation observed for star-forming galaxies, and comparing two independent estimates of the star-formation rate, we show that star formation alone is not sufficient to explain the total radio emission. Considering RQQs above a 2σ detection level in both the radio and the far-infrared, 92 per cent are accretion dominated, and the accretion process accounts for 80 per cent of the radio luminosity when summed across the objects. The radio emission connected with accretion appears to be correlated with the optical luminosity of the RQQ, whilst a weaker luminosity dependence is evident for the radio emission connected with star formation.

Improved dynamical constraints on the mass of the central black hole in NGC 404

Astrophysical Journal Institute of Physics 836:2 (2017) 237

Authors:

Dieu D Nguyen, Anil C Seth, Mark den Brok, Nadine Neumayer, Michele Cappellari, Aaron J Barth, Nelson Caldwell, Benjamin F Williams, Breanna Binder

Abstract:

We explore the nucleus of the nearby 109 M⊙ early-type galaxy, NGC 404, using Hubble Space Telescope (HST)/STIS spectroscopy and WFC3 imaging. We first present evidence for nuclear variability in UV, optical, and infrared filters over a time period of 15 years. This variability adds to the already substantial evidence for an accreting black hole at the center of NGC 404. We then redetermine the dynamical black hole mass in NGC 404 including modeling of the nuclear stellar populations. We combine HST/STIS spectroscopy with WFC3 images to create a local color-M/L relation derived from stellar population modeling of the STIS data. We then use this to create a mass model for the nuclear region. We use Jeans modeling to fit this mass model to adaptive optics stellar kinematic observations from Gemini/NIFS. From our stellar dynamical modeling, we find a 3σ upper limit on the black hole mass of 1.5 × 105 M⊙. Given the accretion evidence for a black hole, this upper limit makes NGC 404 the lowest mass central black hole with dynamical mass constraints. We find that the kinematics of H2 emission line gas show evidence for non-gravitational motions preventing the use of gas dynamical modeling to constrain the black hole mass. Our stellar population modeling also reveals that the central, counter-rotating region of the nuclear cluster is dominated by ∼1 Gyr old populations.

Discovery of water at high spectral resolution in the atmosphere of 51 Peg b

(2017)

Authors:

JL Birkby, RJ de Kok, M Brogi, H Schwarz, IAG Snellen