Deep near-infrared spectroscopy of passively evolving galaxies at z≳1.4
Astrophysical Journal 755:1 (2012)
Abstract:
We present the results of new near-IR spectroscopic observations of passive galaxies at z ≳ 1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in absorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample that is almost complete to K AB = 21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of 0.05; however, 30% of objects have photometric redshifts systematically underestimated by up to 25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z = 1.43, 1.53, 1.67, and 1.82, with this latter one including seven galaxies. SED fits to broadband fluxes indicate stellar masses in the range of 4-40 × 10 10 M and that star formation was quenched 1Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their HδF indices and the strengths of the 4000 Å break, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the co-addition of 17 individual spectra. The effective radii of the galaxies have been measured on the COSMOS HST/ACS i F814W-band image, confirming the coexistence at these redshifts of passive galaxies, which are substantially more compact than their local counterparts with others that follow the local effective radius-stellar mass relation. For the galaxy with the best signal-to-noise spectrum we were able to measure a velocity dispersion of 270 ± 105kms-1 (error bar including systematic errors), indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius. © 2012 The American Astronomical Society. All rights reserved.Herschel-pacs observations of far-ir co line emission in NGC 1068: Highly excited molecular gas in the circumnuclear disk
Astrophysical Journal 755:1 (2012)
Abstract:
We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J upper = 14-30 (E upper/kB = 580-2565K) range, all of which are consistent with arising from within the central 10″ (700pc). The detected transitions are modeled as arising from two different components: a moderate-excitation (ME) component close to the galaxy systemic velocity and a high-excitation (HE) component that is blueshifted by 80kms-1. We employ a large velocity gradient model and derive n H2 105.6cm-3, T kin 170K, and M H2 106.7 M ⊙ for the ME component and n H2 106.4cm-3, T kin 570K, and M H2 105.6 M ⊙ for the HE component, although for both components the uncertainties in the density and mass are ±(0.6-0.9)dex. Both components arise from denser and possibly warmer gas than traced by low-J CO transitions, and the ME component likely makes a significant contribution to the mass budget in the nuclear region. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution and find that the ME transitions are consistent with these lines arising in the200pc diameter ring of material traced by H 2 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H2 ring, but a better kinematic match is found with a clump of infalling gas 40pc north of the active galactic nucleus (AGN). We consider potential heating mechanisms and conclude that X-ray- or shock heating of both components is viable, while far-UV heating is unlikely. We discuss the prospects of placing the HE component near the AGN and conclude that while the moderate thermal pressure precludes an association with the 1pc radius H2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN and might then provide the N H 1025cm-2 column obscuring the nuclear hard X-rays. Finally, we also report sensitive upper limits extending up to J upper = 50, which place constraints on a previous model prediction for the CO emission from the X-ray obscuring torus. © 2012 The American Astronomical Society. All rights reserved.AGN feedback driven molecular outflow in NGC 1266
Proceedings of the International Astronomical Union 8:S290 (2012) 175-176
Abstract:
NGC 1266 is a nearby field galaxy observed as part of the ATLAS 3D survey (Cappellari et al. 2011). NGC 1266 has been shown to host a compact (< 200 pc) molecular disk and a mass-loaded molecular outflow driven by the AGN (Alatalo et al. 2011). Very Long Basline Array (VLBA) observations at 1.65 GHz revealed a compact (diameter < 1.2 pc), high brightness temperature continuum source most consistent with a low-level AGN origin. The VLBA continuum source is positioned at the center of the molecular disk and may be responsible for the expulsion of molecular gas in NGC 1266. Thus, the candidate AGN-driven molecular outflow in NGC 1266 supports the picture in which AGNs do play a significant role in the quenching of star formation and ultimately the evolution of the red sequence of galaxies. © International Astronomical Union 2013.Parallel-sequencing of early-type and spiral galaxies
Proceedings of the International Astronomical Union Cambridge University Press 10:H16 (2012) 330
Abstract:
Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies (ETGs) have been regarded as two distinct families. The spirals are characterized by the presence of disks of stars and gas in rapid rotation, while the early-types are gas poor and described as spheroidal systems, with less rotation and often non-axisymmetric shapes. The separation is physically relevant as it implies a distinct path of formation for the two classes of objects. I will give an overview of recent findings, from independent teams, that motivated a radical revision to Hubble's classic view of ETGs. These results imply a much closer link between spiral galaxies and ETGs than generally assumed.Probing the mass assembly of massive nearby galaxies with deep imaging
Proceedings of the International Astronomical Union 8:S295 (2012) 358-361