A comprehensive view of a strongly lensed planck-associated submillimeter galaxy
Astrophysical Journal 753:2 (2012)
Authors:
H Fu, E Jullo, A Cooray, RS Bussmann, RJ Ivison, I Pérez-Fournon, SG Djorgovski, N Scoville, L Yan, DA Riechers, J Aguirre, R Auld, M Baes, AJ Baker, M Bradford, A Cava, DL Clements, H Dannerbauer, A Dariush, G De Zotti, H Dole, L Dunne, S Dye, S Eales, D Frayer, R Gavazzi, M Gurwell, AI Harris, D Herranz, R Hopwood, C Hoyos, E Ibar, MJ Jarvis, S Kim, L Leeuw, R Lupu, S Maddox, P Martínez-Navajas, MJ Michałowski, M Negrello, A Omont, M Rosenman, D Scott, S Serjeant, I Smail, AM Swinbank, E Valiante, A Verma, J Vieira, JL Wardlow, P Van Der Werf
Abstract:
We present high-resolution maps of stars, dust, and molecular gas in a strongly lensed submillimeter galaxy (SMG) at z = 3.259. HATLAS J114637.9-001132 is selected from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) as a strong lens candidate mainly based on its unusually high 500 μm flux density (300mJy). It is the only high-redshift Planck detection in the 130deg2 H-ATLAS Phase-I area. Keck Adaptive Optics images reveal a quadruply imaged galaxy in the K band while the Submillimeter Array and the Jansky Very Large Array show doubly imaged 880 μm and CO(1→0) sources, indicating differentiated distributions of the various components in the galaxy. In the source plane, the stars reside in three major kpc-scale clumps extended over 1.6kpc, the dust in a compact (∼1 kpc) region ∼3kpc north of the stars, and the cold molecular gas in an extended (∼7kpc) disk ∼5kpc northeast of the stars. The emissions from the stars, dust, and gas are magnified by ∼17, ∼8, and ∼7times, respectively, by four lensing galaxies at z ∼1. Intrinsically, the lensed galaxy is a warm (T dust ∼40-65 K), hyper-luminous (L IR ∼ 1.7 × 1013 L star formation rate (SFR) ∼2000 M yr-1), gas-rich (M gas/M baryon 70%), young (M stellar/SFR 20Myr), and short-lived (M gas/SFR 40Myr) starburst. With physical properties similar to unlensed z > 2 SMGs, HATLAS J114637.9-001132 offers a detailed view of a typical SMG through a powerful cosmic microscope. © 2012. The American Astronomical Society. All rights reserved..