Discovery of a giant HI tail in the galaxy group HCG 44
Monthly Notices of the Royal Astronomical Society 428:1 (2013) 370-380
Abstract:
We report the discovery of a giant HI tail in the intragroup medium of HCG 44 as part of the ATLAS3D survey. The tail is ~300 kpc long in projection and contains ~5 × 108 M ⊙of HI. We detect no diffuse stellar light at the location of the tail down to ~28.5 mag arcsec-2 in g band. We speculate that the tail might have formed as gas was stripped from the outer regions of NGC 3187 (a member of HCG 44) by the group tidal field. In this case, a simple model indicates that about 1/3 of the galaxy's HI was stripped during a time interval of <1 Gyr. Alternatively, the tail may be the remnant of an interaction between HCG 44 and NGC 3162, a spiral galaxy now ~650 kpc away from the group. Regardless of the precise formation mechanism, the detected HI tail shows for the first time direct evidence of gas stripping in HCG 44. It also highlights that deep HI observations over a large field are needed to gather a complete census of this kind of events inthe local Universe.©2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Disentangling the stellar populations in the counter-rotating disc galaxy NGC 4550
Monthly Notices of the Royal Astronomical Society 428:2 (2013) 1296-1302
Abstract:
In order to try and understand its origins, we present high-quality long-slit spectral observations of the counter-rotating stellar discs in the strange S0 galaxy NGC 4550. We kinematically decompose the spectra into two counter-rotating stellar components (plus a gaseous component), in order to study both their kinematics and their populations. The derived kinematics largely confirm what was known previously about the stellar discs, but trace them to larger radii with smaller errors; the fitted gaseous component allows us to trace the hydrogen emission lines for the first time, which are found to follow the same rather strange kinematics previously seen in the [OIII] line. Analysis of the populations of the two separate stellar components shows that the secondary disc has a significantly younger mean age than the primary disc, consistent with later star formation from the associated gaseous material. In addition, the secondary disc is somewhat brighter, also consistent with such additional star formation. However, these measurements cannot be self-consistently modelled by a scenario in which extra stars have been added to initially identical counter-rotating stellar discs, which rules out the Evans & Collett's elegant 'separatrix-crossing' model for the formation of such massive counter-rotating discs from a single galaxy, leaving some form of unusual gas accretion history as the most likely formation mechanism. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Excited OH+, H2 O+, and H3 O + in NGC 4418 and Arp 220
Astronomy and Astrophysics 550 (2013)
Abstract:
We report on Herschel/PACS observations of absorption lines of OH +, H2O+ and H3O+ in NGC 4418 and Arp 220. Excited lines of OH+ and H2O+ with Elower of at least 285 and ∼200 K, respectively, are detected in both sources, indicating radiative pumping and location in the high radiation density environment of the nuclear regions. Abundance ratios OH +/H2O+ of 1-2.5 are estimated in the nuclei of both sources. The inferred OH+ column and abundance relative to H nuclei are (0.5-1) × 1016 cm-2 and ∼ 2 × 10-8, respectively. Additionally, in Arp 220, an extended low excitation component around the nuclear region is found to have OH +/H2O+ ∼ 5-10. H3O+ is detected in both sources with N(H3O+) ∼ (0.5-2) × 1016 cm-2, and in Arp 220 the pure inversion, metastable lines indicate a high rotational temperature of ∼500 K, indicative of formation pumping and/or hot gas. Simple chemical models favor an ionization sequence dominated by H+ → O+ → OH+ → H2O+ → H3O +, and we also argue that the H+ production is most likely dominated by X-ray/cosmic ray ionization. The full set of observations and models leads us to propose that the molecular ions arise in a relatively low density (≥104 cm-3) interclump medium, in which case the ionization rate per H nucleus (including secondary ionizations) is ζ > 10-13 s-1, a lower limit that is several × 102 times the highest current rate estimates for Galactic regions. In Arp 220, our lower limit for ζ is compatible with estimates for the cosmic ray energy density inferred previously from the supernova rate and synchrotron radio emission, and also with the expected ionization rate produced by X-rays. In NGC 4418, we argue that X-ray ionization due to an active galactic nucleus is responsible for the molecular ion production. © 2013 ESO.Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio galaxies?
Monthly Notices of the Royal Astronomical Society 432:1 (2013) 609-625
Abstract:
We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 μm (L250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey-Large Area Survey data, over the redshift range 0.01 < z < 0.8. The far-infrared(FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 L*K.After correcting for stellar mass and redshift, we find no relation between the 250-μm luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies thata galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR)and/or dust mass content of the host system, although this does not mean that other variables(e.g. radio source size) related to the jets do not have an effect. The L250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r< 22) rises with increasing redshift. Compact radio sources (<30 kpc) are associated with higher 250 μm luminosities and dust temperatures than their more extended (>30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e.g. jet-induced or merger-driven star formation) is as yet unknown.For matched samples in LK and g-r, sub-1.5 L*K and super-1.5 L*K radio-detected galaxies have 0.89±0.18 and 0.49±0.12 times the 250μm luminosity of their non-radio-detected counterparts. Thus, while no difference in L250 is observed in sub-1.5 L*K radio-detected galaxies, a strong deficit is observed in super-1.5 L*K radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies (>1.5 L*K) may have systematically lower FIR luminosities(~25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.High resolution in three dimensions with SWIFT and PALM3K
3rd AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes (2013)