Vector-apodizing phase plate coronagraph: design, current performance, and future development [Invited].

Applied optics 60:19 (2021) D52-D72

Authors:

DS Doelman, F Snik, EH Por, SP Bos, GPPL Otten, M Kenworthy, SY Haffert, M Wilby, AJ Bohn, BJ Sutlieff, K Miller, M Ouellet, J de Boer, CU Keller, MJ Escuti, S Shi, NZ Warriner, K Hornburg, JL Birkby, J Males, KM Morzinski, LM Close, J Codona, J Long, L Schatz, J Lumbres, A Rodack, K Van Gorkom, A Hedglen, O Guyon, J Lozi, T Groff, J Chilcote, N Jovanovic, S Thibault, C de Jonge, G Allain, C Vallée, D Patel, O Côté, C Marois, P Hinz, J Stone, A Skemer, Z Briesemeister, A Boehle, AM Glauser, W Taylor, P Baudoz, E Huby, O Absil, B Carlomagno, C Delacroix

Abstract:

Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8 m class telescopes. The vAPP is a geometric-phase patterned coronagraph that is inherently broadband, and its manufacturing is enabled only by direct-write technology for liquid-crystal patterns. The vAPP generates two coronagraphic point spread functions (PSFs) that cancel starlight on opposite sides of the PSF and have opposite circular polarization states. The efficiency, that is, the amount of light in these PSFs, depends on the retardance offset from a half-wave of the liquid-crystal retarder. Using different liquid-crystal recipes to tune the retardance, different vAPPs operate with high efficiencies (${\gt}96\%$) in the visible and thermal infrared (0.55 µm to 5 µm). Since 2015, seven vAPPs have been installed in a total of six different instruments, including Magellan/MagAO, Magellan/MagAO-X, Subaru/SCExAO, and LBT/LMIRcam. Using two integral field spectrographs installed on the latter two instruments, these vAPPs can provide low-resolution spectra (${\rm{R}} \sim 30$) between 1 µm and 5 µm. We review the design process, development, commissioning, on-sky performance, and first scientific results of all commissioned vAPPs. We report on the lessons learned and conclude with perspectives for future developments and applications.

High-contrast observations of brown dwarf companion HR 2562 B with the vector Apodizing Phase Plate coronagraph

(2021)

Authors:

Ben J Sutlieff, Alexander J Bohn, Jayne L Birkby, Matthew A Kenworthy, Katie M Morzinski, David S Doelman, Jared R Males, Frans Snik, Laird M Close, Philip M Hinz, David Charbonneau

Dynamical model of the Milky Way using APOGEE and Gaia data

(2021)

Authors:

Maria Selina Nitschai, Anna-Christina Eilers, Nadine Neumayer, Michele Cappellari, Hans-Walter Rix

The SAMI Galaxy Survey: the third and final data release

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 505:1 (2021) 991-1016

Authors:

Scott M Croom, Matt S Owers, Nicholas Scott, Henry Poetrodjojo, Brent Groves, Jesse van de Sande, Tania M Barone, Luca Cortese, Francesco D’Eugenio, Joss Bland-Hawthorn, Julia Bryant, Sree Oh, Sarah Brough, James Agostino, Sarah Casura, Barbara Catinella, Matthew Colless, Gerald Cecil, Roger L Davies, Michael J Drinkwater, Simon P Driver, Ignacio Ferreras, Caroline Foster, Amelia Fraser-McKelvie, Jon Lawrence, Sarah K Leslie, Jochen Liske, Ángel R López-Sánchez, Nuria PF Lorente, Rebecca McElroy, Anne M Medling, Danail Obreschkow, Samuel N Richards, Rob Sharp, Sarah M Sweet, Dan S Taranu, Edward N Taylor, Edoardo Tescari, Adam D Thomas, James Tocknell, Sam P Vaughan

A low [CII]/[NII] ratio in the center of a massive galaxy at z = 3.7: Evidence for a transition to quiescence at high redshift? (Corrigendum)

Astronomy & Astrophysics EDP Sciences 650 (2021) c2

Authors:

C Schreiber, K Glazebrook, C Papovich, T Díaz-Santos, A Verma, D Elbaz, GG Kacprzak, T Nanayakkara, P Oesch, M Pannella, L Spitler, C Straatman, K-V Tran, T Wang