Integral field spectroscopy of luminous infrared main-sequence galaxies at cosmic noon

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5329-5350

Authors:

L Hogan, D Rigopoulou, GE Magdis, M Pereira-Santaella, I García-Bernete, N Thatte, K Grisdale, J-S Huang

The lens SW05 J143454.4+522850: a fossil group at redshift 0.6?

ArXiv 2104.03324 (2021)

Authors:

Philipp Denzel, Onur Çatmabacak, Jonathan P Coles, Claude Cornen, Robert Feldmann, Ignacio Ferreras, Xanthe Gwyn Palmer, Rafael Küng, Dominik Leier, Prasenjit Saha, Aprajita Verma

WISDOM project – VII. Molecular gas measurement of the supermassive black hole mass in the elliptical galaxy NGC 7052

Monthly Notices of the Royal Astronomical Society Oxford University Press 503:4 (2021) stab791

Authors:

Mark D Smith, Martin Bureau, Timothy A Davis, Michele Cappellari, Lijie Liu, Kyoko Onishi, Satoru Iguchi, Eve V North, Marc Sarzi, Thomas G Williams

Abstract:

Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0′′.11 (⁠37pc) resolution in the 12CO(2-1) line and 1.3 mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of 2.5±0.3×109M⊙ and a stellar I-band mass-to-light ratio of 4.6±0.2M⊙/L⊙,I (3σ confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.

WISDOM project – VIII. Multiscale feedback cycles in the brightest cluster galaxy NGC 0708

Monthly Notices of the Royal Astronomical Society Oxford University Press 503:4 (2021) 5179-5192

Authors:

Eve V North, Timothy A Davis, Martin Bureau, Michele Cappellari, Massimo Gaspari, Satoru Iguchi, Lijie Liu, Kyoko Onishi, Marc Sarzi, Mark D Smith, Thomas G Williams

Abstract:

We present high-resolution (synthesized beam size 0′′..′′088 × 0′′..′′083 or 25 × 23 pc2) Atacama Large Millimetre/submillimetre Array 12CO(2–1) line and 236 GHz continuum observations, as well as 5 GHz enhanced Multi-Element Radio Linked Interferometer Network (e-MERLIN) continuum observations, of NGC 0708; the brightest galaxy in the low-mass galaxy cluster Abell 262. The line observations reveal a turbulent, rotating disc of molecular gas in the core of the galaxy, and a high-velocity, blueshifted feature ≈0′′..′′4 (≈113 pc) from its centre. The submillimetre continuum emission peaks at the nucleus, but extends towards this anomalous CO emission feature. No corresponding elongation is found on the same spatial scales at 5 GHz with e-MERLIN. We discuss potential causes for the anomalous blueshifted emission detected in this source, and conclude that it is most likely to be a low-mass in-falling filament of material condensing from the hot intracluster medium via chaotic cold accretion, but it is also possible that it is a jet-driven molecular outflow. We estimate the physical properties this structure has in these two scenarios, and show that either explanation is viable. We suggest future observations with integral field spectrographs will be able to determine the true cause of this anomalous emission, and provide further evidence for interaction between quenched cooling flows and mechanical feedback on both small and large scales in this source.

WISDOM Project -- VII. Molecular gas measurement of the supermassive black hole mass in NGC 7052

(2021)

Authors:

Mark D Smith, Martin Bureau, Timothy A Davis, Michele Cappellari, Lijie Liu, Kyoko Onishi, Satoru Iguchi, Eve V North, Marc Sarzi, Thomas G Williams