Origins space telescope: from first light to life

Experimental Astronomy Springer Nature 51:3 (2021) 595-624

Authors:

MC Wiedner, S Aalto, L Armus, E Bergin, J Birkby, CM Bradford, D Burgarella, P Caselli, V Charmandaris, A Cooray, E De Beck, JM Desert, M Gerin, J Goicoechea, M Griffin, P Hartogh, F Helmich, M Hogerheijde, L Hunt, A Karska, Q Kral, D Leisawitz, G Melnick, M Meixner, M Matsuura, S Milam, C Pearson, DW Pesce, KM Pontoppidan, A Pope, D Rigopoulou, T Roellig, I Sakon, J Staguhn, K Stevenson

Wide-Field Near Infrared Imaging

Chapter in , World Scientific Publishing (2021) 175-185

The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 504:4 (2021) 5098-5130

Authors:

Francesco D’Eugenio, Matthew Colless, Nicholas Scott, Arjen van der Wel, Roger L Davies, Jesse van de Sande, Sarah M Sweet, Sree Oh, Brent Groves, Rob Sharp, Matt S Owers, Joss Bland-Hawthorn, Scott M Croom, Sarah Brough, Julia J Bryant, Michael Goodwin, Jon S Lawrence, Nuria PF Lorente, Samuel N Richards

The vector-apodizing phase plate coronagraph: design, current performance, and future development

(2021)

Authors:

DS Doelman, F Snik, EH Por, SP Bos, GPPL Otten, M Kenworthy, SY Haffert, M Wilby, AJ Bohn, BJ Sutlieff, K Miller, M Ouellet, J de Boer, CU Keller, MJ Escuti, S Shi, NZ Warriner, KJ Hornburg, JL Birkby, J Males, KM Morzinski, LM Close, J Codona, J Long, L Schatz, J Lumbres, A Rodack, K Van Gorkom, A Hedglen, O Guyon, J Lozi, T Groff, J Chilcote, N Jovanovic, S Thibault, C de Jonge, G Allain, C Vallée, D Patel, O Côté, C Marois, P Hinz, J Stone, A Skemer, Z Briesemeister, A Boehle, AM Glauser, W Taylor, P Baudoz, E Huby, O Absil, B Carlomagno, C Delacroix

Integral field spectroscopy of luminous infrared main-sequence galaxies at cosmic noon

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5329-5350

Authors:

L Hogan, D Rigopoulou, GE Magdis, M Pereira-Santaella, I García-Bernete, N Thatte, K Grisdale, J-S Huang

Abstract:

ABSTRACT We present the results of an integral field spectroscopy survey of a sample of dusty (ultra) luminous infrared galaxies (U/LIRGs) at 2 < z < 2.5 using KMOS on the Very Large Telescope. The sample has been drawn from Herschel deep field surveys and benefits from ancillary multiwavelength data. Our goal is to investigate the physical characteristics, kinematics, and the drivers of star formation in the galaxies whose contribution dominates the peak of the cosmic star formation density. Two-thirds of the sample are main-sequence galaxies in contrast to the starburst nature of local U/LIRGs. Our kinematic study, unique in its focus on z ∼ 2 dusty star-forming galaxies, uses the H α emission line to find that ∼40 per cent appear to be isolated discs based on the ratio of rotational velocity to the velocity dispersion, suggesting steady-state mechanisms are sufficient to power the large star formation rates (SFRs). The ratio of obscured to unobscured star formation indicates the sample of galaxies experiences less dust obscuration compared to intermediate and local counterparts, while also hosting cooler dust than local U/LIRGs. In addition to H α we detect [N ii] 6583 Å in our targets and show the gas-phase metallicities do not exhibit the metal deficiency of local U/LIRGs. These results indicate that, despite their extreme IR luminosity, the underlying mechanisms driving the massive SFRs found at cosmic noon are due to scaled up disc galaxies as opposed to mergers.