Cross-checking SMBH mass estimates in NGC 6958 – I. Stellar dynamics from adaptive optics-assisted MUSE observations

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:4 (2021) 5416-5436

Authors:

Sabine Thater, Davor Krajnović, Peter M Weilbacher, Dieu D Nguyen, Martin Bureau, Michele Cappellari, Timothy A Davis, Satoru Iguchi, Richard McDermid, Kyoko Onishi, Marc Sarzi, Glenn van de Ven

Abstract:

Supermassive black hole masses (MBH) can dynamically be estimated with various methods and using different kinematic tracers. Different methods have only been cross-checked for a small number of galaxies and often show discrepancies. To understand these discrepancies, detailed cross-comparisons of additional galaxies are needed. We present the first part of our cross-comparison between stellar- and gas-based MBH estimates in the nearby fast-rotating early-type galaxy NGC 6958. The measurements presented here are based on ground-layer adaptive optics-assisted Multi-Unit Spectroscopic Explorer (MUSE) science verification data at around 0′′.6 spatial resolution. The spatial resolution is a key ingredient for the measurement and we provide a Gaussian parametrisation of the adaptive optics-assisted point spread function (PSF) for various wavelengths. From the MUSE data, we extracted the stellar kinematics and constructed dynamical models. Using an axisymmetric Schwarzschild technique, we measured an MBH of (3.6+2.7−2.4)×108M⊙ at 3σ significance taking kinematical and dynamical systematics (e.g. radially-varying mass-to-light ratio) into account. We also added a dark halo, but our data does not allow to constrain the dark matter fraction. Adding dark matter with an abundance matching prior results in a 25 per cent more massive black hole. Jeans anisotropic models return MBH of (4.6+2.5−2.7)×108M⊙ and (8.6+0.8−0.8)×108M⊙ at 3σ confidence for spherical and cylindrical alignment of the velocity ellipsoid, respectively. In a follow-up study, we will compare the stellar-based MBH with those from cold and warm gas tracers, which will provide additional constraints for the MBH for NGC 6958, and insights into assumptions that lead to potential systematic uncertainty.

SDSS-IV MaStar: Theoretical Atmospheric Parameters for the MaNGA Stellar Library

(2021)

Authors:

Lewis Hill, Daniel Thomas, Claudia Maraston, Renbin Yan, Justus Neumann, Andrew Lundgren, Daniel Lazarz, Yan-Ping Chen, Michele Cappellari, Jon A Holtzman, Julie Imig, Katia Cunha, Guy Stringfellow, Dmitry Bizyaev, David R Law, Keivan G Stassun, Niv Drory, Michael Merrifield, Timothy C Beers

Cross-checking SMBH mass estimates in NGC 6958 -- I: Stellar dynamics from adaptive optics-assisted MUSE observations

(2021)

Authors:

Sabine Thater, Davor Krajnović, Peter M Weilbacher, Dieu D Nguyen, Martin Bureau, Michele Cappellari, Timothy A Davis, Satoru Iguchi, Richard McDermid, Kyoko Onishi, Marc Sarzi, Glenn van de Ven

The GRAVITY young stellar object survey

Astronomy & Astrophysics EDP Sciences 655 (2021) a73

Authors:

K Perraut, L Labadie, J Bouvier, F Ménard, L Klarmann, C Dougados, M Benisty, J-P Berger, Y-I Bouarour, W Brandner, A Caratti O Garatti, P Caselli, PT de Zeeuw, R Garcia-Lopez, T Henning, J Sanchez-Bermudez, A Sousa, E van Dishoeck, E Alécian, A Amorim, Y Clénet, R Davies, A Drescher, G Duvert, A Eckart, F Eisenhauer, NM Förster-Schreiber, P Garcia, E Gendron, R Genzel, S Gillessen, R Grellmann, G Heißel, S Hippler, M Horrobin, Z Hubert, L Jocou, P Kervella, S Lacour, V Lapeyrère, J-B Le Bouquin, P Léna, D Lutz, T Ott, T Paumard, G Perrin, S Scheithauer, J Shangguan, T Shimizu, J Stadler, O Straub, C Straubmeier, E Sturm, L Tacconi, F Vincent, S von Fellenberg, F Widmann

High-resolution spectroscopy

Chapter in ExoFrontiers: Big Questions in Exoplanetary Science, IOP Publishing (2021) 8-1

Authors:

Matteo Brogi, Jayne Birkby

Abstract:

High-resolution spectroscopy (HRS) allows resolving the spectrum of an exoplanetary atmosphere into individual lines and using the Doppler shift of the planet spectrum to disentangle it from other sources, such as telluric contamination and the host star spectrum. The method excels at identifying chemical species with numerous spectral lines and can be used for transmission, day/night-side emission, and reflected light spectroscopy. This chapter discusses the state of the art and important questions and goals for HRS, the opportunities it offers and the challenges it faces.