The GECKOS survey: The formation history of a barred galaxy via structural decomposition and spatially resolved spectroscopy

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

A Fraser-McKelvie, Da Gadotti, F Fragkoudi, C de Sá-Freitas, M Martig, M Bureau, T Davis, E Emsellem, R Elliott, D Fisher, M Hayden, J van de Sande, Ab Watts.

Abstract:

<jats:p>Disentangling the (co-)evolution of individual galaxy structural components remains a difficult task, owing to the inability to cleanly isolate light from spatially overlapping components. In this pilot study of PGC,044931, observed as part of the GECKOS survey, we utilised a VIRCAM H-band image to decompose the galaxy into five photometric components, three of which dominate by contributing more than $50%$ of light in specific regions, namely, a main disc, a boxy-peanut bulge, and a nuclear disc. When mapping the photometric decompositions onto MUSE observations, we found remarkably good separation in stellar kinematic space. All three structures occupy unique locations in the parameter space of the ratio of the light-weighted stellar line-of-sight mean velocity and velocity dispersion (rm V _⋆/σ_⋆) and the high-order stellar skew (h_3). These clear and distinct kinematic behaviours allowed us to make inferences about the formation histories of the individual components from observations of the mean stellar ages and metallicities of the three components. A clear story emerged: the main disc was built over a sustained and extended star formation phase, possibly partly fuelled by gas from a low-metallicity reservoir. Early on, that disc formed a bar that buckled and subsequently formed a nuclear disc in multiple and enriched star-formation episodes. This result is an example of how careful photometric decompositions combined with spatially well-resolved stellar kinematic information can help separate age-metallicity relations of different components and therefore disentangle the formation history of a galaxy. The results of this pilot study can be extended to a differential study of all GECKOS survey galaxies to assert the true diversity of Milky Way-like galaxies.</jats:p>

TDCOSMO. XXII. Triaxiality and projection effects in time-delay cosmography

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

Xiang-Yu Huang, Simon Birrer, Michele Cappellari, Tommaso Treu, Shawn Knabel, Dominique Sluse

Abstract:

Constraining the mass-sheet degeneracy (MSD) is crucial for improving the precision and accuracy of time-delay cosmography. Joint analyses based on lensing and stellar kinematics have been widely adopted to break the MSD. A three-dimensional (3D) mass and stellar tracer population is required to accurately interpret the kinematics data. Our forward-modeling procedure is aimed at evaluating the projection effects using strong lensing and kinematics observables and to determine an optimal model assumption for the stellar kinematics analysis leading to an unbiased interpretation of the MSD and H_0. We numerically simulated the projection and selection effects for both a triaxial early-type galaxy (ETG) sample from the TNG100 simulation and an axisymmetric sample that matches the properties of slow-rotator galaxies representative of the strong lens galaxy population. Using the axisymmetric sample, we generated mock kinematics observables with spherically aligned axisymmetric Jeans anisotropic modeling (JAM) and assessed the kinematic recovery under different model assumptions. Using the triaxial sample, we quantified the random uncertainty introduced by modeling triaxial galaxies with axisymmetric JAM. We show that spherical JAM analysis of spatially unresolved kinematic data introduces a bias of up to 2%-4% (depending on the intrinsic shape of the lens) in the inferred MSD. Our model largely corrects this bias, resulting in a residual random uncertainty in the range of 0-2.2% in the stellar velocity dispersion (0-4.4% in H_0), depending on the projected ellipticity and the anisotropy of the stellar orbits. This residual uncertainty can be further mitigated by the use of spatially resolved kinematic data, which constrain the intrinsic axis ratio. We also show that the random uncertainty in the kinematics recovery using axisymmetric JAM for axisymmetric galaxies is at the level of 0.24% in the velocity dispersion, and the uncertainty using axisymmetric JAM for triaxial galaxies is at the level of 0.17% in the velocity dispersion.

On the rapid growth of SMBHs in high-z galaxies: the aftermath of Population III.1 stars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2000

Authors:

Mahsa Sanati, Julien Devriendt, Sergio Martin-Alvarez, Adrianne Slyz, Jonathan C Tan

Abstract:

Abstract Despite the vast amount of energy released by active galactic nuclei (AGN), their role in early galaxy formation and in regulating the growth of supermassive black holes (SMBHs) remains poorly understood. Through new high-resolution zoom-in cosmological simulations, we follow the co-evolution of 105 M⊙ black hole seeds with their host dwarf galaxy. We model ionizing feedback from a Pop III.1 progenitor, applicable to a wide range of internally or externally irradiated SMBH formation scenarios. The simulated suite progressively spans physics ranging from no AGN feedback to more complex setups including thermal, kinetic and radiative feedback – explored for both low and enhanced AGN power. Across all our models, we find that black hole seeds efficiently reach masses of ∼107 M⊙ within a ∼1010 M⊙ halo by z = 8. Although they exhibit notably different mass growth histories, these latter seem unimpeded by the presence of AGN feedback. The simulation including radiative feedback is the most distinct, with super-Eddington episodes driving fast and mass-loaded gas outflows (exceeding 2500 km s−1) up to ∼50 kpc, along with minor stellar mass suppression in the host galaxy. Our measurements are in broad agreement with moderate luminosity quasars recently observed by JWST, producing overmassive black holes (SMBH-to-galaxy mass ratios 0.01 − 1), dynamical masses of ∼109.5 M⊙, stellar masses of ∼108.5 M⊙, and high, though short-lived, Eddington fraction accretion rates. These results advocate for a scenario where AGN feedback allows for rapid SMBH growth during the reionisation era, while driving winds that extend deep into the intergalactic medium – shaping host galaxies as well as more distant surroundings.

The PAH 3.4 micron feature as a tracer of shielding in the Orion Bar and NGC 6240

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2047

Authors:

N Thatte, D Rigopoulou, Fr Donnan, I Garcia-Bernete, M Pereira-Santaella, B Draine, O Veenema, B Kerkeni, A Alonso-Herrero, L Hermosa Muñoz, G Speranza

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We have carried out a detailed analysis of the 3.4 μm spectral feature arising from Polycyclic Aromatic Hydrocarbons (PAH), using JWST archival data. For the first time in an external galaxy (NGC 6240), we have identified two distinct spectral components of the PAH 3.4 μm feature: a shorter wavelength component at 3.395 μm, which we attribute to short aliphatic chains tightly attached to the aromatic rings of the PAH molecules; and a longer wavelength feature at 3.405 μm that arises from longer, more fragile, aliphatic chains that are weakly attached to the parent PAH molecule. These longer chains are more easily destroyed by far-ultraviolet photons (&amp;gt;5eV) and PAH thermal emission only occurs where PAH molecules are shielded from more energetic photons by dense molecular gas. We see a very strong correlation in the morphology of the PAH 3.395 μm feature with the PAH 3.3 μm emission, the latter arising from robust aromatic PAH molecules. We also see an equally strong correlation between the PAH 3.405 μm morphology and the warm molecular gas, as traced by H2 vibrational lines. We show that the flux ratio PAH 3.395/PAH 3.405 &amp;lt; 0.3 corresponds strongly to regions where the PAH molecules are shielded by dense molecular gas, so that only modestly energetic UV photons penetrate to excite the PAHs. Our work shows that PAH 3.405 μm and PAH 3.395 μm emission features can provide robust diagnostics of the physical conditions of the interstellar medium in external galaxies, and can be used to quantify the energies of the photon field penetrating molecular clouds.</jats:p>

JADES reveals a large population of low mass black holes at high redshift

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1979

Authors:

Sophia Geris, Roberto Maiolino, Yuki Isobe, Jan Scholtz, Francesco D’Eugenio, Xihan Ji, Ignas Juodžbalis, Charlotte Simmonds, Pratika Dayal, Alessandro Trinca, Raffaella Schneider, Santiago Arribas, Rachana Bhatawdekar, Andrew J Bunker, Stefano Carniani, Stéphane Charlot, Jacopo Chevallard, Emma Curtis-Lake, Benjamin D Johnson, Eleonora Parlanti, Pierluigi Rinaldi, Brant Robertson, Sandro Tacchella, Hannah Übler, Giacomo Venturi, Christina C Williams, Joris Witstok

Abstract:

Abstract JWST has revealed a large population of active galactic nuclei (AGN) in the distant universe, which are challenging our understanding of early massive black hole (BH) seeding and growth. We expand the exploration of this population to lower luminosities by stacking ∼600 NIRSpec grating spectra from the JWST Advanced Deep Extragalactic Survey (JADES) at 3 < z < 7, in bins of redshift, [O iii]5007 luminosity and equivalent width, UV luminosity and stellar mass. In various stacks, we detect a broad component of Hα without a counterpart in [O iii], implying that it is not due to outflows but traces the Broad Line Region of a large population of low-luminosity AGN not detected in individual spectra. The detection, in some stacks, of high [O iii]4363/Hγ, typical of AGN, further confirms the detection of a large population of AGN. We infer that the stacks probe BHs with masses of a few times 106M⊙ accreting at rates L/LEdd ∼ 0.02–0.1, i.e. a low mass and dormant parameter space poorly explored by previous studies on individual targets. We identify populations of BHs that fall within the scatter of the local MBH − M* scaling relation, indicating that there is a population of high-z BHs that are not overmassive relative to their host galaxies. Yet, on average, the stacks are still overmassive relative the local relation, with some of them 1–2 dex above it. We infer that the BH mass function at 3 < z < 5 is consistent with models in which BHs evolve through short bursts of super-Eddington accretion.