Simulating Intermediate Black Hole Mass Measurements for a Sample of Galaxies with Nuclear Star Clusters Using ELT/HARMONI High Spatial Resolution Integral-field Stellar Kinematics

Astronomical Journal American Astronomical Society 170:2 (2025) 124

Authors:

Dieu D Nguyen, Michele Cappellari, Hai N Ngo, Tinh QT Le, Tuan N Le, Khue NH Ho, An K Nguyen, Phong T On, Huy G Tong, Niranjan Thatte, Miguel Pereira-Santaella

Abstract:

Understanding the demographics of intermediate-mass black holes (IMBHs, MBH ≈ 102–105 M⊙) in low-mass galaxies is key to constraining black hole seed formation models, but detecting them is challenging due to their small gravitational sphere of influence (SOI). The upcoming Extremely Large Telescope (ELT) High Angular Resolution Monolithic Optical and Near-infrared Integral Field Spectrograph (HARMONI) instrument, with its high angular resolution, offers a promising solution. We present simulations assessing HARMONI’s ability to measure IMBH masses in nuclear star clusters (NSCs) of nearby dwarf galaxies. We selected a sample of 44 candidates within 10 Mpc. For two representative targets, NGC 300 and NGC 3115 dw01, we generated mock HARMONI integral-field data cubes using realistic inputs derived from Hubble Space Telescope imaging, stellar population models, and Jeans anisotropic models (JAM), assuming IMBH masses up to 1% of the NSC mass. We simulated observations across six near-infrared gratings at 10 mas resolution. Analyzing the mock data with standard kinematic extraction and JAM models in a Bayesian framework, we demonstrate that HARMONI can resolve the IMBH SOI and accurately recover masses down to ≈0.5% of the NSC mass within feasible exposure times. These results highlight HARMONI’s potential to revolutionize IMBH studies.

Detection of the 2175 Å UV bump at z > 7: evidence for rapid dust evolution in a merging reionization-era galaxy

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 1136-1154

Authors:

Katherine Ormerod, Joris Witstok, Renske Smit, Anna de Graaff, Jakob M Helton, Michael V Maseda, Irene Shivaei, Andrew J Bunker, Stefano Carniani, Francesco D’Eugenio, Rachana Bhatawdekar, Jacopo Chevallard, Marijn Franx, Nimisha Kumari, Roberto Maiolino, Pierluigi Rinaldi, Brant Robertson, Sandro Tacchella

Abstract:

Dust is a fundamental component of the interstellar medium within galaxies, as dust grains are highly efficient absorbers of ultraviolet (UV) and optical photons. Accurately quantifying this obscuration is crucial for interpreting galaxy spectral energy distributions (SEDs). The extinction curves in the Milky Way (MW) and Large Magellanic Cloud exhibit a strong feature known as the 2175 Å UV bump, most often attributed to small carbonaceous dust grains. This feature was recently detected in faint galaxies out to , suggesting rapid formation channels. Here, we report the detection of a strong UV bump in a luminous Lyman-break galaxy at , GNWY-7379420231, through observations taken as part of the NIRSpec Wide GTO survey. We fit a dust attenuation curve that is consistent with the MW extinction curve within , in a galaxy just Myr after the big bang. From the integrated spectrum, we infer a young mass-weighted age ( Myr) for this galaxy, however spatially resolved SED fitting unveils the presence of an older stellar population ( Myr). Furthermore, morphological analysis provides evidence for a potential merger. The underlying older stellar population suggests the merging system could be pre-enriched, with the dust illuminated by a merger-induced starburst. Moreover, turbulence driven by stellar feedback in this bursty region may be driving polycyclic aromatic hydrocarbon formation through top-down shattering. The presence of a UV bump in GNWY-7379420231 solidifies growing evidence for the rapid evolution of dust properties within the first billion years of cosmic time.

WISDOM Project – XXIV. Giant molecular clouds of the spiral galaxy NGC 5064: high fraction of retrograde rotation

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:4 (2025) 3081-3100

Authors:

Lijie Liu, Fanglin Shu, Martin Bureau, Kyoko Onishi, Timothy A Davis, Fu-Heng Liang, Woorak Choi, Thomas G Williams, Anan Lu, Satoru Iguchi

Abstract:

We present high-resolution ( or pc) Atacama Large Millimeter/sub-millimeter Array CO(J = 2–1) observations of the spiral galaxy NGC 5064. Our study identifies 478 molecular clouds, of which 387 are resolved both spatially and spectrally. These clouds exhibit similarities to those of the Milky Way in terms of their sizes, molecular gas masses, velocity dispersions, velocity gradients, and Larson relations. However, the NGC 5064 clouds stand out with slightly higher gas mass surface densities, lower virial parameters ( assuming a standard conversion factor cm (K km s; for a lower conversion factor of cm (K km s), and an unusually high fraction of retrograde rotation (). Retrograde clouds are 18 per cent larger, 58 per cent more massive, 15 per cent more turbulent and have 17 per cent larger gas mass surface densities than prograde clouds. The velocity gradients in the clouds seem to arise from turbulence rather than cloud’s intrinsic rotation or large-scale galaxy rotation. Cloud–cloud collisions provide the most plausible explanation for the elevated retrograde fraction, though further investigation is needed to confirm this scenario. Projection effects due to the galaxy’s high inclination () may further enhance the apparent retrograde fraction. Confirmation using less inclined systems is essential to determine whether the observed dominance of retrograde rotation reflects a genuine physical phenomenon or is significantly shaped by projection effects.

A relativistic jet from a neutron star breaking out of its natal supernova remnant

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:4 (2025) 4011-4024

Authors:

KVS Gasealahwe, K Savard, IM Monageng, I Heywood, RP Fender, PA Woudt, J English, JH Matthews, H Whitehead, FJ Cowie, AK Hughes, P Saikia, SE Motta

Abstract:

The young neutron star X-ray binary, Cir X-1, resides within its natal supernova remnant and experiences ongoing outbursts every 16.5 d, likely due to periastron passage in an eccentric orbit. We present the deepest ever radio image of the field, which reveals relativistic jet-punched bubbles that are aligned with the mean axis of the smaller scale jets observed close to the X-ray binary core. We are able to measure the minimum energy for the bubble, which is around = erg. The nature and morphological structure of the source were investigated through spectral index mapping and numerical simulations. The spectral index map reveals a large fraction of the nebula’s radio continuum has a steep slope, associated with optically thin synchrotron emission, although there are distinct regions with flatter spectra. Our data are not sensitive enough to measure the spectral index of the protruding bubbles. We used the pluto code to run relativistic hydrodynamic simulations to try and qualitatively reproduce the observations with a combined supernova-plus-jet system. We are able to do so using a simplified model in which the asymmetrical bubbles are best represented by supernova explosion which is closely followed (within 100 yr) by a phase of very powerful jets lasting less than 1000 yr. These are the first observations revealing the initial breakout of neutron star jets from their natal supernova remnant, and further support the scenario in which Cir X-1 is a younger relation of the archetypal jet source SS433.

Accelerated quenching and chemical enhancement of massive galaxies in a z ≈ 4 gas-rich halo

Nature Astronomy Springer Nature 9:8 (2025) 1240-1255

Authors:

Pablo G Pérez-González, Francesco D’Eugenio, Bruno Rodríguez del Pino, Michele Perna, Hannah Übler, Roberto Maiolino, Santiago Arribas, Giovanni Cresci, Isabella Lamperti, Andrew J Bunker, Stefano Carniani, Stephane Charlot, Chris J Willott, Torsten Böker, Eleonora Parlanti, Jan Scholtz, Giacomo Venturi, Guillermo Barro, Luca Costantin, Ignacio Martín-Navarro, James S Dunlop, Daniel Magee

Abstract:

Stars in galaxies form when baryons radiatively cool down and fall into gravitational wells whose mass is dominated by dark matter. Eventually, star formation quenches as gas is depleted and/or perturbed by feedback processes, no longer being able to collapse and condense. We report the first spatially resolved spectroscopic observations, using the JWST/NIRSpec IFU, of a massive, completely quiescent galaxy (Jekyll) and its neighborhood at z = 3.714, when the Universe age was 10% of today’s. Jekyll resides in a massive dark matter halo (with mass MDM > 1012 M→) and forms a galaxy pair with Hyde, which shows very intense dust-enshrouded star formation (star formation rate → 300 M→ yr↑1). We find large amounts of kinematically perturbed ionized and neutral gas in the circumgalactic medium around the pair. Despite this large gas reservoir, Jekyll, which formed 1011 M→ in stars and chemically enriched early (first billion years of the Universe) and quickly (200–300 Myr), has remained quiescent for over 500 Myr. The properties of the gas found around the two galaxies are consistent with intense, AGN-induced photoionization, or intense shocks. However, with the current data no obscured or unobscured AGN is detected in the central galaxy (Jekyll) nor in the very active and dust rich star-forming galaxy (Hyde).