JADES: Low Surface Brightness Galaxies at 0.4 < z < 0.8 in GOODS-S

(2025)

Authors:

Tristen Shields, Marcia Rieke, Kevin Hainline, Jakob M Helton, Andrew J Bunker, Courtney Carreira, Emma Curtis-Lake, Daniel J Eisenstein, Benjamin D Johnson, Pierluigi Rinaldi, Brant Robertson, Christina C Williams, Christopher NA Willmer, Yang Sun

Deciphering the Nature of Virgil: An Obscured Active Galactic Nucleus Lurking within an Apparently Normal Lyα Emitter during Cosmic Reionization

The Astrophysical Journal American Astronomical Society 994:1 (2025) 86

Authors:

Pierluigi Rinaldi, Pablo G Pérez-González, George H Rieke, Jianwei Lyu, Francesco D’Eugenio, Zihao Wu, Stefano Carniani, Tobias J Looser, Irene Shivaei, Leindert A Boogaard, Tanio Diaz-Santos, Luis Colina, Göran Östlin, Stacey Alberts, Javier Álvarez-Márquez, Marianna Annuziatella, Manuel Aravena, Rachana Bhatawdekar, Andrew J Bunker, Karina I Caputi, Stéphane Charlot, Alejandro Crespo Gómez, Mirko Curti, Andreas Eckart, Steven Gillman, Kevin Hainline, Nimisha Kumari, Jens Hjorth, Edoardo Iani, Hanae Inami, Zhiyuan Ji, Benjamin D Johnson, Gareth C Jones, Álvaro Labiano, Roberto Maiolino, Jens Melinder, Thibaud Moutard, Florian Peissker, Marcia Rieke, Brant Robertson, Jan Scholtz, Sandro Tacchella, Paul P van der Werf, Fabian Walter, Christina C Williams, Chris Willott, Joris Witstok, Hannah Übler, Yongda Zhu

Abstract:

We present a comprehensive analysis of the MIRI Extremely Red Object Virgil, a Lyα emitter at zspec = 6.6379 ± 0.0035 with the photometric properties of a Little Red Dot. Leveraging new JWST/MIRI imaging from the MIDIS and PAHSPECS programs, we confirm Virgil’s extraordinary nature among galaxies in JADES/GOODS-South, exhibiting a strikingly red NIRCam-to-MIRI color (F444W–F1500W = 2.84 ± 0.04 mag). Deep NIRSpec/PRISM spectroscopy from the OASIS program offers key insights into the host galaxy, revealing properties of an average star-forming galaxy during Cosmic Reionization, such as a subsolar metallicity, low-to-moderate dust content, and a relatively high ionization parameter and electron temperature. By estimating the star formation rate of Virgil from UV and Hα, we find evidence that the galaxy is either entering or fading out of a bursty episode. Although line-ratio diagnostics employed at high z would classify Virgil as an active galactic nucleus (AGN), this classification becomes ambiguous once redshift evolution is considered. Nonetheless, Virgil occupies the same parameter space as recently confirmed AGNs at similar redshifts. The new deep MIRI data at 15 μm reinforce the AGN nature of Virgil, as inferred from multiple spectral energy distribution (SED) fitting codes. Virgil’s rising infrared SED and UV excess resemble those of Dust-Obscured Galaxies (DOGs) studied with Spitzer at Cosmic Noon, particularly blue-excess HotDOGs. Our results highlight the need for a multiwavelength approach incorporating MIRI to uncover such extreme sources at z ≳ 6 and to shed light on the interplay between galaxy evolution and early black hole growth during Cosmic Reionization.

The GECKOS survey: The formation history of a barred galaxy via structural decomposition and spatially resolved spectroscopy

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

A Fraser-McKelvie, Da Gadotti, F Fragkoudi, C de Sá-Freitas, M Martig, M Bureau, T Davis, E Emsellem, R Elliott, D Fisher, M Hayden, J van de Sande, Ab Watts.

Abstract:

<jats:p>Disentangling the (co-)evolution of individual galaxy structural components remains a difficult task, owing to the inability to cleanly isolate light from spatially overlapping components. In this pilot study of PGC,044931, observed as part of the GECKOS survey, we utilised a VIRCAM H-band image to decompose the galaxy into five photometric components, three of which dominate by contributing more than $50%$ of light in specific regions, namely, a main disc, a boxy-peanut bulge, and a nuclear disc. When mapping the photometric decompositions onto MUSE observations, we found remarkably good separation in stellar kinematic space. All three structures occupy unique locations in the parameter space of the ratio of the light-weighted stellar line-of-sight mean velocity and velocity dispersion (rm V _⋆/σ_⋆) and the high-order stellar skew (h_3). These clear and distinct kinematic behaviours allowed us to make inferences about the formation histories of the individual components from observations of the mean stellar ages and metallicities of the three components. A clear story emerged: the main disc was built over a sustained and extended star formation phase, possibly partly fuelled by gas from a low-metallicity reservoir. Early on, that disc formed a bar that buckled and subsequently formed a nuclear disc in multiple and enriched star-formation episodes. This result is an example of how careful photometric decompositions combined with spatially well-resolved stellar kinematic information can help separate age-metallicity relations of different components and therefore disentangle the formation history of a galaxy. The results of this pilot study can be extended to a differential study of all GECKOS survey galaxies to assert the true diversity of Milky Way-like galaxies.</jats:p>

The PAH 3.4 micron feature as a tracer of shielding in the Orion Bar and NGC 6240

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2047

Authors:

N Thatte, D Rigopoulou, Fr Donnan, I Garcia-Bernete, M Pereira-Santaella, B Draine, O Veenema, B Kerkeni, A Alonso-Herrero, L Hermosa Muñoz, G Speranza

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We have carried out a detailed analysis of the 3.4 μm spectral feature arising from Polycyclic Aromatic Hydrocarbons (PAH), using JWST archival data. For the first time in an external galaxy (NGC 6240), we have identified two distinct spectral components of the PAH 3.4 μm feature: a shorter wavelength component at 3.395 μm, which we attribute to short aliphatic chains tightly attached to the aromatic rings of the PAH molecules; and a longer wavelength feature at 3.405 μm that arises from longer, more fragile, aliphatic chains that are weakly attached to the parent PAH molecule. These longer chains are more easily destroyed by far-ultraviolet photons (&amp;gt;5eV) and PAH thermal emission only occurs where PAH molecules are shielded from more energetic photons by dense molecular gas. We see a very strong correlation in the morphology of the PAH 3.395 μm feature with the PAH 3.3 μm emission, the latter arising from robust aromatic PAH molecules. We also see an equally strong correlation between the PAH 3.405 μm morphology and the warm molecular gas, as traced by H2 vibrational lines. We show that the flux ratio PAH 3.395/PAH 3.405 &amp;lt; 0.3 corresponds strongly to regions where the PAH molecules are shielded by dense molecular gas, so that only modestly energetic UV photons penetrate to excite the PAHs. Our work shows that PAH 3.405 μm and PAH 3.395 μm emission features can provide robust diagnostics of the physical conditions of the interstellar medium in external galaxies, and can be used to quantify the energies of the photon field penetrating molecular clouds.</jats:p>

The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

Abstract The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at z ≲ 0.05, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the fundamental plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions—including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory—we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding S8 = 0.793 ± 0.035. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.