Stellar-mass black holes on the millimetre fundamental plane of black hole accretion

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag037

Authors:

Jacob S Elford, Ilaria Ruffa, Timothy A Davis, Martin Bureau, Rob Fender, Jindra Gensior, Thomas Williams, Hengyue Zhang

Abstract:

Abstract Recent work revealed the existence of a galaxy ‘millimetre fundamental plane of black hole accretion’, a tight correlation between nuclear 1 mm luminosity, intrinsic 2 – 10 keV X-ray luminosity and supermassive black hole mass, originally discovered for nearby low- and high-luminosity active galactic nuclei. Here we use mm and X-ray data of 5 X-ray binaries (XRBs) to demonstrate that these stellar-mass black holes also lie on the mm fundamental plane, as they do at radio wavelengths. One source for which we have multi-epoch observations shows evidence of deviations from the plane after a state change, suggesting that the plane only applies to XRBs in the hard state, as is true again at radio wavelengths. We show that both advection-dominated accretion flows and compact jet models predict the existence of the plane across the entire range of black hole masses, although these models vary in their ability to accurately predict the XRB black hole masses.

Strong Bars, Strong Inflow: The Effect of Bar Strength on Gas Inflow

Research Notes of the American Astronomical Society IOP Publishing 9:12 (2025) 341

Authors:

Maëlle Magnan, Tobias Géron, Izzy L Garland, Chris J Lintott, Jason Shingirai Makechemu, David O’Ryan, Brooke D Simmons, Rebecca J Smethurst

Abstract:

Stellar bars are elongated structures in disk galaxies that can torque and funnel gas inward, influencing galaxy evolution. While strong bars are known to induce rapid inflow, the impact of weaker bars remains less certain. We collected spectroscopic data using the Isaac Newton Telescope to analyze 18 nearby galaxies (strongly barred, weakly barred, and unbarred) drawn from Galaxy Zoo DESI. We obtained spatial profiles of equivalent width (EW) and ionized gas velocity dispersion by fitting Gaussian profiles to the Hα emission line. Strongly barred galaxies exhibit a distinctive three-peaked EW[Hα] structure, consistent with inward funneling of gas. Weakly barred systems lack this pattern, which suggests limited inflow. Velocity dispersion distributions further distinguish the bar types, with strongly barred galaxies showing significantly higher values than weakly barred and unbarred systems. These results suggest that strong bars drive gas inflow, while weak bars exert a limited dynamical influence.

GA-NIFS: the highest-redshift ring galaxy candidate from a head-on collision

(2025)

Authors:

Michele Perna, Santiago Arribas, Luca Costantin, Pablo G Pérez-González, Carlota Prieto-Jiménez, Bruno Rogríguez Del Pino, Francesco D'Eugenio, Isabella Lamperti, Filippo Mannucci, Hannah Übler, Torsten Böker, Andrew J Bunker, Stefano Carniani, Stà phane Charlot, Roberto Maiolino, Elena Bertola, Daniel Ceverino, Chiara Circosta, Giovanni Cresci, Jan Scholtz, Giacomo Venturi

The Velocity Field Olympics: assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:2 (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

ABSTRACT The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at $z \lesssim 0.05$, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the Fundamental Plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions – including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory – we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding $S_8 = 0.793 \pm 0.035$. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.

GA-NIFS: Powerful and frequent outflows in moderate-luminosity AGN at $z\sim3-6$

(2025)

Authors:

Giacomo Venturi, Stefano Carniani, Elena Bertola, Chiara Circosta, Eleonora Parlanti, Michele Perna, Santiago Arribas, Torsten Böker, Andrew Bunker, Stà phane Charlot, Francesco D'Eugenio, Roberto Maiolino, Bruno Rodríguez del Pino, Hannah Übler, Giovanni Cresci, Gareth C Jones, Nimisha Kumari, Isabella Lamperti, Madeline A Marshall, Jan Scholtz, Sandra Zamora