BlackTHUNDER: Shedding light on a dormant and extreme little red dot at z=8.50

(2025)

Authors:

Gareth C Jones, Hannah Übler, Roberto Maiolino, Xihan Ji, Alessandro Marconi, Francesco D'Eugenio, Santiago Arribas, Andrew J Bunker, Stefano Carniani, Stà phane Charlot, Giovanni Cresci, Kohei Inayoshi, Yuki Isobe, Ignas Juodžbalis, Giovanni Mazzolari, Pablo G Pérez-González, Michele Perna, Raffaella Schneider, Jan Scholtz, Sandro Tacchella

Glimmers in the Cosmic Dawn. II. A Variability Census of Supermassive Black Holes across the Universe * * This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. These observations are associated with programs 1563, 12498, and 17073

The Astrophysical Journal American Astronomical Society 991:2 (2025) 141

Authors:

Vieri Cammelli, Jonathan C Tan, Alice R Young, Matthew J Hayes, Jasbir Singh, Richard S Ellis, Aayush Saxena, Nicolas Laporte, Pierluigi Monaco, Benjamin W Keller

Abstract:

Understanding the origin and evolution of supermassive black holes (SMBHs) stands as one of the most important challenges in astrophysics and cosmology, with little current theoretical consensus. Improved observational constraints on the cosmological evolution of SMBH demographics are needed. Here we report results of a search via photometric variability for SMBHs appearing as active galactic nuclei (AGN) in the cosmological volume defined by the Hubble Ultra Deep Field. This work includes particular focus on a new observation carried out in 2023 with the Hubble Space Telescope using the WFC3/IR/F140W, which is compared directly to equivalent data taken 11 yr earlier in 2012. Two earlier pairs of observations from 2009 to 2012 with WFC3/IR/F105W and WFC3/IR/F160W are also analyzed. We identify 521, 188, and 109 AGN candidates as nuclear sources that exhibit photometric variability at a level of 2σ, 2.5σ, and 3σ, respectively, in at least one filter. This sample includes 13, 3, and 2 AGN candidates at redshifts z > 6, when the Universe was ≲900 Myr old. After variability and luminosity function (down to MUV = −17 mag) completeness corrections, we estimate the comoving number density of SMBHs, nSMBH(z). At z ≳ 6, nSMBH ≳ 6 × 10−3 cMpc−3. At low z our observations are sensitive to AGN fainter than MUV = −17 mag, and we estimate nSMBH ≳ 10−2 cMpc−3. We discuss how these results place strong constraints on a variety of SMBH seeding theories.

MaNGA DynPop. VII. A Unified Bulge–Disk–Halo Model for Explaining Diversity in Circular Velocity Curves of 6000 Spiral and Early-type Galaxies

The Astrophysical Journal: Supplement Series American Astronomical Society 280:2 (2025) 55

Authors:

Kai Zhu, Michele Cappellari, Shude Mao, Shengdong Lu, Ran Li, Yong Shi, David A Simon, Youquan Fu, Xiaohan Wang

Abstract:

We derive circular velocity curves (CVCs) from stellar dynamical models for ∼6000 nearby galaxies in the final data release of the Sloan Digital Sky Survey-IV MaNGA survey with integral-field spectroscopy, exploring connections between the inner gravitational potential (traced by CVC amplitude/shape) and galaxy properties. The maximum circular velocity ( Vcircmax ) and circular velocity at the half-light radius ( Vcirc(Remaj) ) both scale linearly with the stellar second velocity moment σe2≡〈V2+σ2〉 within the half-light isophote, following Vcircmax≈1.72σe (7% error) and Vcirc(Remaj)≈1.62σe (7% error). CVC shapes (rising, flat, declining) correlate strongly with structural and stellar population properties: declining curves dominate in massive, early-type, bulge-dominated galaxies with old, metal-rich stars and early quenching, while rising CVCs prevail in disk-dominated systems with younger stellar populations and ongoing star formation. Using a unified bulge–disk–halo model, we predict CVC shapes with minimal bias, identifying three governing parameters: bulge-to-total mass ratio (B/T), dark matter fraction within Re, and bulge Sérsic index. The distribution of CVC shapes across the mass–size plane reflects evolutionary pathways driven by (i) in situ star formation (spurring bulge growth) and (ii) dry mergers. This establishes CVC morphology as a diagnostic for galaxy evolution, linking dynamical signatures to structural and stellar population histories.

Getting More Out of Black Hole Superradiance: a Statistically Rigorous Approach to Ultralight Boson Constraints from Black Hole Spin Measurements

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1564

Authors:

Sebastian Hoof, David JE Marsh, Júlia Sisk-Reynés, James H Matthews, Christopher Reynolds

Abstract:

Abstract Black hole (BH) superradiance can provide strong constraints on the properties of ultralight bosons (ULBs). While most of the previous work has focused on the theoretical predictions, here we investigate the most suitable statistical framework to constrain ULB masses and self-interactions using BH spin measurements. We argue that a Bayesian approach based on a simple timescales analysis provides a clear statistical interpretation, deals with limitations regarding the reproducibility of existing BH analyses, incorporates the full information from BH data, and allows us to include additional nuisance parameters or to perform hierarchical modelling with BH populations in the future. We demonstrate the feasibility of our approach using mass and spin posterior samples for the X-ray binary BH M33 X-7 and, for the first time in this context, the supermassive BH IRAS 09149-6206. We explain the differences to existing ULB constraints in the literature and illustrate the effects of various assumptions about the superradiance process (equilibrium regime vs cloud collapse, higher occupation levels). As a result, our procedure yields the most statistically rigorous ULB constraints available in the literature, with important implications for the QCD axion and axion-like particles. We encourage all groups analysing BH data to publish likelihood functions or posterior samples as supplementary material to facilitate this type of analysis, and for theory developments to compress their findings to effective timescale modifications. https://github.com/sebhoof/bhsr

The dependence of the Type Ia Supernova colour–luminosity relation on their host galaxy properties

Monthly Notices of the Royal Astronomical Society Oxford University Press 543:3 (2025) 2180-2203

Authors:

S Ramaiya, M Vincenzi, MJ Jarvis, P Wiseman, M Sullivan

Abstract:

Using the Dark Energy Survey 5-yr sample, we determine the properties of type Ia supernova (SN Ia) host galaxies across a wide multiwavelength range – from the optical to far-infrared – including data from the Herschel and Spitzer space telescopes. We categorize the SNe Ia into three distinct groups according to the distribution of their host galaxies on the star formation rate (SFR) – stellar mass () plane. Each region comprises host galaxies at distinct stages in their evolutionary pathways: Region 1 – low-mass hosts; Region 2 – high-mass, star-forming hosts and Region 3 – high-mass, passive hosts. We find SNe Ia in host galaxies located in Region 1 have the steepest slope (quantified by ) between their colours and luminosities, with . This differs at the significance level to SNe Ia in Region 3, which have the shallowest colour–luminosity slope with . After correcting SNe Ia in each subsample by their respective , events in Region 3 (high-mass, passive hosts) are mag () brighter, post-standardization. We conclude that future cosmological analyses should apply standardization relations to SNe Ia based upon the region in which the SN host galaxy lies in the SFR– plane. Alternatively, cosmological analyses should restrict the SN Ia sample to events whose host galaxies occupy a single region of this plane.