IRIS opens pupils' eyes to real space research

Astronomy & Geophysics Oxford University Press (OUP) 60:1 (2019) 1.22-1.24

Authors:

Peter Hatfield, W Furnell, A Shenoy, E Fox, B Parker, L Thomas, EAC Rushton

On the Observed Diversity of Star Formation Efficiencies in Giant Molecular Clouds

(2019)

Authors:

Kearn Grisdale, Oscar Agertz, Florent Renaud, Alessandro B Romeo, Julien Devriendt, Adrianne Slyz

VizieR Online Data Catalog: KiDS DR3 QSO catalog (Nakoneczny+, 2019)

VizieR Online Data Catalog (2019) J/A+A/624/A13-J/A+A/624/A13

Authors:

S Nakoneczny, M Bilicki, A Soalrz, A Pollo, N Maddox, C Spiniello, M Brescia, NR Napolitano

The fifteenth data release of the Sloan Digital Sky Surveys: First release of MaNGA-derived quantities, data visualization tools, and Stellar Library

Astrophysical Journal Supplement Institute of Physics 240:23 (2019)

Authors:

DS Aguado, R Ahumada, A Almeida, Michele Cappellari, R Davies, Chris Lintott

Abstract:

Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.

Measurement Accuracy of Inspiraling Eccentric Neutron Star and Black Hole Binaries Using Gravitational Waves

ASTROPHYSICAL JOURNAL American Astronomical Society 871:2 (2019) ARTN 178

Authors:

Laszlo Gondan, Bence Kocsis

Abstract:

In a recent paper, we determined the measurement accuracy of physical parameters for eccentric, precessing, non-spinning, inspiraling, stellar-mass black hole - black hole (BH-BH) binaries for the upcoming second-generation LIGO/VIRGO/KAGRA detector network at design sensitivity using the Fisher matrix method. Here we extend that study to a wide range of binary masses including neutron star - neutron star (NS-NS), NS-BH, and BH-BH binaries with BH masses up to $110 \, M_{\odot}$. The measurement error of eccentricity $e_{10 \,\rm Hz}$ at a gravitational-wave (GW) frequency of $10 \, {\rm Hz}$ is in the range $(10^{-4}-10^{-3}) \times (D_L/ 100\,\rm Mpc)$ for NS-NS, NS-BH, and BH-BH binaries at a luminosity distance of $D_L$ if $e_{10 \,\rm Hz} \gtrsim 0.1 $. For events with masses and distances similar to the detected 10 GW transients, we show that nonzero orbital eccentricities may be detected if $0.081 \lesssim e_{10 \,\rm Hz}$. Consequently, the LIGO/VIRGO/KAGRA detector network at design sensitivity will have the capability to distinguish between eccentric waveforms and circular waveforms. In comparison to circular inspirals, we find that the chirp mass measurement precision can improve by up to a factor of $\sim 20$ and $\sim 50-100$ for NS-NS and NS-BH binaries with BH companion masses $\lesssim 40 \, M_{\odot}$, respectively. The identification of eccentric sources may give information on their astrophysical origin; it would indicate merging binaries in triple or higher multiplicity systems or dynamically formed binaries in dense stellar systems such as globular clusters or galactic nuclei.