The relation between galaxy density and radio jet power for 1.4 GHz VLA selected AGNs in Stripe 82
Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 5156-5166
Abstract:
Using a Karl G. Jansky Very Large Array (VLA) L-band (1-2 GHz) survey covering∼100 deg^2 of the Stripe 82 field, we have obtained a catalogue of 2716 radio AGNs. For these AGNs, we investigate the impact of galaxy density on 1.4 GHz radio luminosity (L1.4).We determine their close environment densities using the surface density parameter, ΣN, for N = 2 and N = 5, which we bin by redshift to obtain a pseudo-3D galaxy density measure. Matching the radio AGNs to sources without radio detections in terms of redshift, K-band magnitude and (g−K) colour index, we obtain samples of control galaxies and determine whether radio AGN environments differ from this general population. Our results indicate that the environmental density of radio AGNs and their radio luminosity are not correlated up to z ∼ 0.8, over the luminosity range 10^23 < (L1.4/W Hz−1) < 10^26.We also find that, when using a control sample matched in terms of redshift, K-band magnitude and colour, environments of radio AGNs are similar to those of the control sample but with an excess of overdense regions in which radio AGNs aremore prevalent. Our results suggest that the <1Mpc-scale galaxy environment plays some role in determining whether a galaxy produces a radio AGN. The jet power, however, does not correlate with environment. From this, we infer that secular processes, e.g. accretion flows of cold gas to the central black hole are more critical in fuelling radio AGN activity than radio jet power.Tidal Disruption Events and Gravitational Waves from Intermediate-mass Black Holes in Evolving Globular Clusters across Space and Time
ASTROPHYSICAL JOURNAL American Astronomical Society 867:2 (2018) ARTN 119
Abstract:
We present a semi-analytic model for self-consistently evolving a population of globular clusters (GCs) in a given host galaxy across cosmic time. We compute the fraction of GCs still hosting intermediate-mass black holes (IMBHs) at a given redshift in early and late type galaxies of different masses and sizes, and the corresponding rate of tidal disruption events (TDEs), both main-sequence (MS) and white dwarf (WD) stars. We find that the integrated TDE rate for the entire GC population can exceed the corresponding rate in a given galactic nucleus and that $\sim 90$% of the TDEs reside in GCs within a maximum radius of $\sim 2-15$ kpc from the host galaxy's center. This suggests that observational efforts designed to identify TDEs should not confine themselves to galactic nuclei alone, but should also consider the outer galactic halo where massive old GCs hosting IMBHs would reside. Indeed, such off-centre TDEs as predicted here may already have been observed. MS TDE rates are more common than WD TDE rates by a factor 30 (100) at $z\leq 0.5$ ($z=2$). We also calculate the rate of IMBH-SBH mergers across cosmic time, finding that the typical IMRI rate at low redshift is of the order of $\sim 0.5-3$ Gpc$^{-3}$ yr$^{-1}$, which becomes as high as $\sim 100$ Gpc$^{-3}$ yr$^{-1}$ near the peak of GC formation. Advanced LIGO combined with VIRGO, KAGRA, ET and LISA will be able to observe the bottom-end and top-end of the IMBH population, respectively.Strong lensing considerations for the LSST observing strategy
(2018)
Abstract:
Strong gravitational lensing enables a wide range of science: probing cosmography; testing dark matter models; understanding galaxy evolution; and magnifying the faint, small and distant Universe. However to date exploiting strong lensing as a tool for these numerous cosmological and astrophysical applications has been severely hampered by limited sample sized. LSST will drive studies of strongly lensed galaxies, galaxy groups and galaxy clusters into the statistical age. Time variable lensing events, e.g. measuring cosmological time delays from strongly lensed supernovae and quasars, place the strongest constraints on LSST's observing strategy and have been considered in the DESC observing strategy white papers. Here we focus on aspects of `static' lens discovery that will be affected by the observing strategy. In summary, we advocate (1) ensuring comparable (sub-arcsecond) seeing in the g-band as in r and i to facilitate discovery of gravitational lenses, and (2) initially surveying the entire observable extragalactic sky as rapidly as possible to enable early science spanning a broad range of static and transient interests.Cold gas outflows from the Small Magellanic Cloud traced with ASKAP
NATURE ASTRONOMY 2:11 (2018) 901-906
Ultra-high energy cosmic rays from shocks in the lobes of powerful radio galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 4303-4321