High-redshift radio galaxies at low radio frequencies

ArXiv 1810.08119 (2018)

Authors:

A Saxena, HJA Rottgering

KROSS–SAMI: a direct IFS comparison of the Tully–Fisher relation across 8 Gyr since z ≈ 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 482:2 (2018) 2166-2188

Authors:

AL Tiley, Martin Bureau, L Cortese, CM Harrison, HL Johnson, JP Stott, AM Swinbank, I Smail, D Sobral, Andrew J Bunker, K Glazebrook, RG Bower, D Obreschkow, JJ Bryant, MJ Jarvis, J Bland-Hawthorn, G Magdis, AM Medling, SM Sweet, C Tonini, OJ Turner, RM Sharples, SM Croom, M Goodwin, IS Konstantopoulos

Abstract:

We construct Tully–Fisher relations (TFRs), from large samples of galaxies with spatially resolved H α emission maps from the K-band Multi-Object Spectrograph (KMOS) Redshift One Spectroscopic Survey (KROSS) at z ≈ 1. We compare these to data from the Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph (SAMI) Galaxy Survey at z ≈ 0. We stringently match the data quality of the latter to the former, and apply identical analysis methods and sub-sample selection criteria to both to conduct a direct comparison of the absolute K-band magnitude and stellar mass TFRs at z ≈ 1 and 0. We find that matching the quality of the SAMI data to that of KROSS results in TFRs that differ significantly in slope, zero-point, and (sometimes) scatter in comparison to the corresponding original SAMI relations. These differences are in every case as large as or larger than the differences between the KROSS z ≈ 1 and matched SAMI z ≈ 0 relations. Accounting for these differences, we compare the TFRs at z ≈ 1 and 0. For disc-like, star-forming galaxies we find no significant difference in the TFR zero-points between the two epochs. This suggests the growth of stellar mass and dark matter in these types of galaxies is intimately linked over this ≈8 Gyr period.

KROSS-SAMI: A Direct IFS Comparison of the Tully-Fisher Relation Across 8 Gyr Since $z \approx 1$

(2018)

Authors:

AL Tiley, M Bureau, L Cortese, CM Harrison, HL Johnson, JP Stott, AM Swinbank, I Smail, D Sobral, AJ Bunker, K Glazebrook, RG Bower, D Obreschkow, JJ Bryant, MJ Jarvis, J Bland-Hawthorn, G Magdis, AM Medling, SM Sweet, C Tonini, OJ Turner, RM Sharples, SM Croom, M Goodwin, IS Konstantopoulos, NPF Lorente, JS Lawrence, J Mould, MS Owers, SN Richards

Understanding mechanical feedback from HERGs and LERGs

ArXiv 1810.06899 (2018)

Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO

ASTROPHYSICAL JOURNAL American Astronomical Society 866:1 (2018) ARTN 66

Authors:

Barry McKernan, KE Saavik Ford, J Bellovary, Nwc Leigh, Z Haiman, B Kocsis, W Lyra, M-M Mac Low, B Metzger, M O'Dowd, S Endlich, Dj Rosen

Abstract:

© 2018. The American Astronomical Society. All rights reserved.. Black hole (BH) mergers detectable with the Laser Interferometer Gravitational-wave Observatory (LIGO) can occur in active galactic nucleus (AGN) disks. Here we parameterize the merger rates, the mass spectrum, and the spin spectrum of BHs in AGN disks. The predicted merger rate spans ∼10-3-104 Gpc-1 yr-1, so upper limits from LIGO (<212 Gpc-1 yr-1) already constrain it. The predicted mass spectrum has the form of a broken power law, consisting of a pre-existing BH power-law mass spectrum and a harder power-law mass spectrum resulting from mergers. The predicted spin spectrum is multipeaked with the evolution of retrograde spin BHs in the gas disk playing a key role. We outline the large uncertainties in each of these LIGO observables for this channel and we discuss ways in which they can be constrained in the future.