Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the ‘green valley’
Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 1265-1290
Abstract:
We investigate the nature of star-forming galaxies with reduced specific star formation rate (sSFR) and high stellar masses, those ‘green valley’ objects that seemingly cause a reported bending, or flattening, of the star-forming main sequence. The fact that such objects host large bulges recently led some to suggest that the internal formation of bulges was a late event that induced the sSFRs of massive galaxies to drop in a slow downfall, and thus the main sequence to bend. We have studied in detail a sample of 10 galaxies at 0.45 < z < 1 with secure SFR from Herschel, deep Keck optical spectroscopy, and HST imaging from CANDELS allowing us to perform multiwavelength bulge to disc decomposition, and to derive star formation histories for the separated bulge and disc components. We find that the bulges hosted in these systems below main sequence are virtually all maximally old, with ages approaching the age of the Universe at the time of observation, while discs are young (〈 T50〉 ∼ 1.5 Gyr). We conclude that, at least based on our sample, the bending of the main sequence is, for a major part, due to rejuvenation, and we disfavour mechanisms that postulate the internal formation of bulges at late times. The very old stellar ages of our bulges suggest a number density of early-type galaxies at z = 1–3 higher than actually observed. If confirmed, this might represent one of the first direct validations of hierarchical assembly of bulges at high redshifts.WALLABY early science - III. An HI study of the spiral galaxy NGC 1566
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 2797-2817
Abstract:
This paper reports on the atomic hydrogen gas (H I) observations of the spiral galaxy NGC 1566 using the newly commissioned Australian Square Kilometre Array Pathfinder radio telescope. We measure an integrated H I flux density of 180.2 Jy km s−1 emanating from this galaxy, which translates to an H I mass of 1.94×1010M⊙ at an assumed distance of 21.3 Mpc. Our observations show that NGC 1566 has an asymmetric and mildly warped H I disc. The H I-to-stellar mass fraction (MHI/M∗) of NGC 1566 is 0.29, which is high in comparison with galaxies that have the same stellar mass (1010.8 M⊙). We also derive the rotation curve of this galaxy to a radius of 50 kpc and fit different mass models to it. The NFW, Burkert, and pseudo-isothermal dark matter halo profiles fit the observed rotation curve reasonably well and recover dark matter fractions of 0.62, 0.58, and 0.66, respectively. Down to the column density sensitivity of our observations (NHI=3.7×1019 cm−2), we detect no H I clouds connected to, or in the nearby vicinity of, the H I disc of NGC 1566 nor nearby interacting systems. We conclude that, based on a simple analytic model, ram pressure interactions with the IGM can affect the H I disc of NGC 1566 and is possibly the reason for the asymmetries seen in the H I morphology of NGC 1566.Localization of Binary Black-Hole Mergers with Known Inclination
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)
Abstract:
The localization of stellar-mass binary black hole mergers using gravitational waves is critical in understanding the properties of the binaries' host galaxies, observing possible electromagnetic emission from the mergers, or using them as a cosmological distance ladder. The precision of this localization can be substantially increased with prior astrophysical information about the binary system. In particular, constraining the inclination of the binary can reduce the distance uncertainty of the source. Here we present the first realistic set of localizations for binary black hole mergers, including different prior constraints on the binaries' inclinations. We find that prior information on the inclination can reduce the localization volume by a factor of 3. We discuss two astrophysical scenarios of interest: (i) follow-up searches for beamed electromagnetic/neutrino counterparts and (ii) mergers in the accretion disks of active galactic nuclei.Hot, dense He II outflows during the 2017 outburst of the X-ray transient Swift J1357.2−0933
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 489:1 (2019) L47-L52
Abstract:
Time-resolved SALT spectra of the short-period, dipping X-ray transient, Swift J1357.2−0933, during its 2017 outburst has revealed broad Balmer and He II λ4686 absorption features, blueshifted by ∼600 km s−1. Remarkably these features are also variable on the ∼500 s dipping period, indicating their likely association with structure in the inner accretion disc. We interpret this as arising in a dense, hot (≳30 000 K) outflowing wind seen at very high inclination, and draw comparisons with other accretion disc corona sources. We argue against previous distance estimates of 1.5 kpc and favour a value ≳6 kpc, implying an X-ray luminosity LX ≳ 4 × 1036 erg s−1. Hence it is not a very faint X-ray transient. Our preliminary 1D Monte Carlo radiative transfer and photoionization calculations support this interpretation, as they imply a high intrinsic LX, a column density NH ≳ 1024 cm−2, and a low covering factor for the wind. Our study shows that Swift J1357.2−0933 is truly remarkable amongst the cohort of luminous, Galactic X-ray binaries, showing the first example of He II λ4686 absorption, the first (and only) variable dip period and is possibly the first black hole ‘accretion disc corona’ candidate.Efficient solution of the anisotropic spherically-aligned axisymmetric Jeans equations of stellar hydrodynamics for galactic dynamics
(2019)