Short-Read Single-Molecule DNA Sequencing for Highly Parallel Analysis of Protein-DNA Interactions

Biophysical Journal Elsevier 114:3 (2018) 92a

Authors:

Rebecca Andrews, Horst Steuer, Arun Shivalingam, Afaf H El-Sagheer, Tom Brown, Achillefs N Kapanidis

Wide-Field Monitoring of Single Fluorescent Molecules and Nanoparticles without Immobilization

Biophysical Journal Elsevier 114:3 (2018) 169a

Authors:

Barak Gilboa, Bo Jing, Maabur Sow, Tao Ju Cui, Anne Plochowietz, Achillefs N Kapanidis

Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes

Nucleic Acids Research 46:2 (2018) 677-688

Authors:

D Duchi, K Gryte, NC Robb, Z Morichaud, C Sheppard, K Brodolin, S Wigneshweraraj, AN Kapanidis

Abstract:

© The Author(s) 2017. Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex sub-sequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia colitranscription open complexes. Our results revealed the existence of two stable states within RNAP-DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation.

Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.

Proceedings of the National Academy of Sciences of the United States of America 115:2 (2018) 331-336

Authors:

Heesoo Uhm, Wooyoung Kang, Kook Sun Ha, Changwon Kang, Sungchul Hohng

Abstract:

Because RNAs fold as they are being synthesized, their transcription rate can affect their folding. Here, we report the results of single-molecule fluorescence studies that characterize the ligand-dependent cotranscriptional folding of the Escherichia coli thiM riboswitch that regulates translation. We found that the riboswitch aptamer folds into the "off" conformation independent of its ligand, but switches to the "on" conformation during transcriptional pausing near the translational start codon. Ligand binding maintains the riboswitch in the off conformation during transcriptional pauses. We expect our assay will permit the controlled study of the two main physical mechanisms that regulate cotranscriptional folding: transcriptional pausing and transcriptional speed.

Increased PKMζ activity impedes lateral movement of GluA2-containing AMPA receptors.

Molecular brain 10:1 (2017) 56-56

Authors:

Nam-Kyung Yu, Heesoo Uhm, Jaehoon Shim, Jun-Hyeok Choi, Sangsu Bae, Todd Charlton Sacktor, Sungchul Hohng, Bong-Kiun Kaang

Abstract:

Protein kinase M zeta (PKMζ), a constitutively active, atypical protein kinase C isoform, maintains a high level of expression in the brain after the induction of learning and long-term potentiation (LTP). Further, its overexpression enhances long-term memory and LTP. Thus, multiple lines of evidence suggest a significant role for persistently elevated PKMζ levels in long-term memory. The molecular mechanisms of how synaptic properties are regulated by the increase in PKMζ, however, are still largely unknown. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) mediates most of the fast glutamatergic synaptic transmission in the brain and is known to be critical for the expression of synaptic plasticity and memory. Importance of AMPAR trafficking has been implicated in PKMζ-mediated cellular processes, but the detailed mechanisms, particularly in terms of regulation of AMPAR lateral movement, are not well understood. In the current study, using a single-molecule live imaging technique, we report that the overexpression of PKMζ in hippocampal neurons immobilized GluA2-containing AMPARs, highlighting a potential novel mechanism by which PKMζ may regulate memory and synaptic plasticity.