Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.

Eur Biophys J 37:2 (2008) 165-171

Authors:

Lijun Shang, Stephen J Tucker

Abstract:

Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K(+) channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the "helix-bundle crossing". However, in the inwardly rectifying (Kir) potassium channel family, the role of this "hinge" residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper "hinge" residues are in close contact with the base of the pore alpha-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the "lower" gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.

A NOVEL KCNA1 MUTATION IDENTIFIED IN AN ITALIAN FAMILY AFFECTED BY EPISODIC ATAXIA TYPE 1

NEUROSCIENCE 157:3 (2008) 577-587

Authors:

P Imbrici, F Gualandi, MC D'Adamo, M Taddei Masieri, P Cudia, D De Grandis, R Mannucci, I Nicoletti, SJ Tucker, A Ferlini, M Pessia

Genetic selection of activatory mutations in KcsA.

Channels (Austin) 2:6 (2008) 413-418

Authors:

Jennifer J Paynter, Peter Sarkies, Isabelle Andres-Enguix, Stephen J Tucker

Abstract:

The KcsA potassium channel from Streptomyces lividans is one of the most actively studied ion channels. However, there are still unresolved issues about its gating mechanism in vivo because the channel is only activated by highly acidic intracellular pH, meaning that it will be mostly inactive in its host environment. In this study we have used a genetic complementation assay of K+-auxotrophic E. coli (TK2420) and S. cerevisiae (SGY1528) to identify activatory or 'gain-of-function' mutations which allow functional activity of KcsA in the physiological environment of two markedly different expression systems. These mutations clustered at the helix-bundle-crossing in both TM1 and TM2 (residues H25, L105, A108, T112, W113, F114, E118 and Q119), and include residues previously implicated in the pH-gating mechanism. We discuss how these gain-of-function mutations may result in their activatory phenotype, the relative merits of the E. coli and S. cerevisiae genetic complementation approaches for the identification of gating mutations in prokaryotic K+ channels, and ways in which this assay may be improved for future use in screening protocols.

H-Bonding at the Helix-Bundle Crossing Controls Gating in Kir Potassium Channels

Neuron 55 (2007) 602-614

Authors:

SJ Tucker, Markus Rapedius, Philip Fowler, Thomas Baukrowitz

Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study.

Biochemistry 46:12 (2007) 3643-3652

Authors:

Shozeb Haider, Syma Khalid, Stephen J Tucker, Frances M Ashcroft, Mark SP Sansom

Abstract:

Inward rectifier potassium (Kir) channels regulate cell excitability and transport K+ ions across membranes. Homotetrameric models of three mammalian Kir channels (Kir1.1, Kir3.1, and Kir6.2) have been generated, using the KirBac3.1 transmembrane and rat Kir3.1 intracellular domain structures as templates. All three models have been explored by 10 ns molecular dynamics simulations in phospholipid bilayers. Analysis of the initial structures revealed conservation of potential lipid interaction residues (Trp/Tyr and Arg/Lys side chains near the lipid headgroup-water interfaces). Examination of the intracellular domains revealed key structural differences between Kir1.1 and Kir6.2 which may explain the difference in channel inhibition by ATP. The behavior of all three models in the MD simulations revealed that they have conformational stability similar to that seen for comparable simulations of, for example, structures derived from cryoelectron microscopy data. Local distortions of the selectivity filter were seen during the simulations, as observed in previous simulations of KirBac and in simulations and structures of KcsA. These may be related to filter gating of the channel. The intracellular hydrophobic gate does not undergo any substantial changes during the simulations and thus remains functionally closed. Analysis of lipid-protein interactions of the Kir models emphasizes the key role of the M0 (or "slide") helix which lies approximately parallel to the bilayer-water interface and forms a link between the transmembrane and intracellular domains of the channel.