Modelling of the ATP-inhibitory mechanism in ATP-sensitive potassium (KATP) channels: Insights from computer simulations of wild-type and mutant channels.

BIOPHYS J 88:1 (2005) 284A-284A

Authors:

LJ Shang, P Tammaro, SJ Tucker, P Proks

Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels.

J Biol Chem 278:44 (2003) 43533-43540

Authors:

Maria Casamassima, M Cristina D'Adamo, Mauro Pessia, Stephen J Tucker

Abstract:

Heteromultimerization between different potassium channel subunits can generate channels with novel functional properties and thus contributes to the rich functional diversity of this gene family. The inwardly rectifying potassium channel subunit Kir5.1 exhibits highly selective heteromultimerization with Kir4.1 to generate heteromeric Kir4.1/Kir5.1 channels with unique rectification and kinetic properties. These novel channels are also inhibited by intracellular pH within the physiological range and are thought to play a key role in linking K+ and H+ homeostasis by the kidney. However, the mechanisms that control heteromeric K+ channel assembly and the structural elements that generate their unique functional properties are poorly understood. In this study we identify residues at an intersubunit interface between the cytoplasmic domains of Kir5.1 and Kir4.1 that influence the novel rectification and gating properties of heteromeric Kir4.1/Kir5.1 channels and that also contribute to their pH sensitivity. Furthermore, this interaction presents a structural mechanism for the functional coupling of these properties and explains how specific heteromeric interactions can contribute to the novel functional properties observed in heteromeric Kir channels. The highly conserved nature of this structural association between Kir subunits also has implications for understanding the general mechanisms of Kir channel gating and their regulation by intracellular pH.

Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels

American Journal of Physiology - Cell Physiology 284:4 53-4 (2003)

Authors:

AA Konstas, C Korbmacher, SJ Tucker

Abstract:

Heteromultimerization between different inwardly rectifying (Kir) potassium channel subunits is an important mechanism for the generation of functional diversity. However, little is known about the mechanisms that control this process and that prevent promiscuous interactions in cells that express many different Kir subunits. In this study, we have examined the heteromeric assembly of Kir5.1 with other Kir subunits and have shown that this subunit exhibits a highly selective interaction with members of the Kir4.0 subfamily and does not physically associate with other Kir subunits such as Kir1.1, Kir2.1, and Kir6.2. Furthermore, we have identified regions within the Kir4.1 subunit that appear to govern the specificity of this interaction. These results help us to understand the mechanisms that control Kir subunit recognition and assembly and how cells can express many different Kir channels while maintaining distinct subpopulations of homo- and heteromeric channels within the cell.

Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels.

Am J Physiol Cell Physiol 284:4 (2003) C910-C917

Authors:

Angelos-Aristeidis Konstas, Christoph Korbmacher, Stephen J Tucker

Abstract:

Heteromultimerization between different inwardly rectifying (Kir) potassium channel subunits is an important mechanism for the generation of functional diversity. However, little is known about the mechanisms that control this process and that prevent promiscuous interactions in cells that express many different Kir subunits. In this study, we have examined the heteromeric assembly of Kir5.1 with other Kir subunits and have shown that this subunit exhibits a highly selective interaction with members of the Kir4.0 subfamily and does not physically associate with other Kir subunits such as Kir1.1, Kir2.1, and Kir6.2. Furthermore, we have identified regions within the Kir4.1 subunit that appear to govern the specificity of this interaction. These results help us to understand the mechanisms that control Kir subunit recognition and assembly and how cells can express many different Kir channels while maintaining distinct subpopulations of homo- and heteromeric channels within the cell.

Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel.

J Biol Chem 277:28 (2002) 25377-25384

Authors:

Angelos-Aristeidis Konstas, Jan-Peter Koch, Stephen J Tucker, Christoph Korbmacher

Abstract:

The epithelial sodium channel (ENaC) and the secretory potassium channel (Kir1.1/ROMK) are expressed in the apical membrane of renal collecting duct principal cells where they provide the rate-limiting steps for Na(+) absorption and K(+) secretion. The cystic fibrosis transmembrane conductance regulator (CFTR) is thought to regulate the function of both ENaC and Kir1.1. We hypothesized that CFTR may provide a regulatory link between ENaC and Kir1.1. In Xenopus laevis oocytes co-expressing both ENaC and CFTR, the CFTR currents were 3-fold larger than those in oocytes expressing CFTR alone due to an increased expression of CFTR in the plasma membrane. ENaC was also able to increase Kir1.1 currents through an increase in surface expression, but only in the presence of CFTR. In the absence of CFTR, co-expression of ENaC was without effect on Kir1.1. ENaC-mediated CFTR-dependent up-regulation of Kir1.1 was reduced with a Liddle's syndrome mutant of ENaC. Furthermore, ENaC co-expressed with CFTR was without effect on the closely related K(+) channel, Kir4.1. We conclude that ENaC up-regulates Kir1.1 in a CFTR-dependent manner. CFTR may therefore provide the mechanistic link that mediates the coordinated up-regulation of Kir1.1 during the stimulation of ENaC by hormones such as aldosterone or antidiuretic hormone.