Modulation of hKv1.1 and hKv1.2 voltage gating and C-type inactivation by 5-HT2C receptors

BIOPHYSICAL JOURNAL 78:1 (2000) 207A-207A

Authors:

P Imbrici, SJ Tucker, MC D'Adamo, F Sponcichetti, M Pessia

Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2.

J Biol Chem 274:47 (1999) 33393-33397

Authors:

SJ Tucker, FM Ashcroft

Abstract:

The amino-terminal and carboxyl-terminal domains of inwardly rectifying potassium (Kir) channel subunits are both intracellular. There is increasing evidence that both of these domains are required for the regulation of Kir channels by agents such as G-proteins and nucleotides. Kir6.2 is the pore-forming subunit of the ATP-sensitive K(+) (K(ATP)) channel. Using an in vitro protein-protein interaction assay, we demonstrate that the two intracellular domains of Kir6.2 physically interact with each other, and we map a region within the N terminus that is responsible for this interaction. "Cross-talk" through this interaction may explain how mutations in either the N or C terminus can influence the intrinsic ATP-sensitivity of Kir6.2. Interestingly, the "interaction domain" is highly conserved throughout the superfamily of Kir channels. The N-terminal interaction domain of Kir6.2 can also interact with the C terminus of both Kir6.1 and Kir2.1. Furthermore, a mutation within the conserved region of the N-terminal interaction domain, which disrupts its interaction with the C terminus, severely compromised the ability of both Kir6.2 and Kir2.1 to form functional channels, suggesting that this interaction may be a feature common to all members of the Kir family of potassium channels.

The role of lysine 185 in the kir6.2 subunit of the ATP-sensitive channel in channel inhibition by ATP.

J Physiol 520 Pt 3:Pt 3 (1999) 661-669

Authors:

F Reimann, TJ Ryder, SJ Tucker, FM Ashcroft

Abstract:

1. ATP-sensitive potassium (KATP) channels are composed of pore-forming Kir6.2 and regulatory SUR subunits. A truncated isoform of Kir6.2, Kir6.2DeltaC26, forms ATP-sensitive channels in the absence of SUR1, suggesting the ATP-inhibitory site lies on Kir6.2. 2. Previous studies have shown that mutation of the lysine residue at position 185 (K185) in the C-terminus of Kir6.2 to glutamine, decreased the channel sensitivity to ATP without affecting the single-channel conductance or the intrinsic channel kinetics. This mutation also impaired 8-azido[32P]-ATP binding to Kir6.2. 3. To determine if K185 interacts directly with ATP, we made a range of mutations at this position, and examined the effect on the channel ATP sensitivity by recording macroscopic currents in membrane patches excised from Xenopus oocytes expressing wild-type or mutant Kir6.2DeltaC26. 4. Substitution of K185 by a positively charged amino acid (arginine) had no substantial effect on the sensitivity of the channel to ATP. Mutation to a negatively charged residue markedly decreased the channel ATP sensitivity: the Ki for ATP inhibition increased from 85 microM to >30 mM when arginine was replaced with aspartic acid. Substitution of neutral residues had intermediate effects. 5. The inhibitory effects of ADP, ITP and GTP were also reduced when K185 was mutated to glutamine or glutamate. 6. The results indicate that a positively charged amino acid at position 185 is required for high-affinity ATP binding to Kir6.2. Our results demonstrate that ATP does not interact with the side-chain of K185. It remains unclear whether ATP interacts with the backbone of this residue, or whether its mutation influences ATP binding allosterically.

NEM modification prevents high-affinity ATP binding to the first nucleotide binding fold of the sulphonylurea receptor, SUR1.

FEBS Lett 458:3 (1999) 292-294

Authors:

M Matsuo, SJ Tucker, FM Ashcroft, T Amachi, K Ueda

Abstract:

Pancreatic beta-cell ATP-sensitive potassium channels, composed of SUR1 and Kir6.2 subunits, serve as a sensor for intracellular nucleotides and regulate glucose-induced insulin secretion. To learn more about the interaction of SUR1 with nucleotides, we examined the effect of N-ethylmaleimide (NEM) modification. Photoaffinity labeling of SUR1 with 5 microM 8-azido-[alpha-32P]ATP or 8-azido-[gamma-32P]ATP was inhibited by NEM with Ki of 1.8 microM and 2.4 microM, and Hill coefficients of 0.94 and 1.1, respectively. However, when the cysteine residue in the Walker A motif of the first nucleotide binding fold (NBF1) of SUR1 was replaced with serine (C717S), photoaffinity labeling was not inhibited by 100 microM NEM. These results suggest that NBF1 of SUR1 has a NEM-sensitive structure similar to that of NBF1 of MDR1, a multidrug transporter, and confirm NBF1 as the high-affinity ATP binding site on SUR1.

Involvement of the n-terminus of Kir6.2 in coupling to the sulphonylurea receptor.

J Physiol 518 ( Pt 2):Pt 2 (1999) 325-336

Authors:

F Reimann, SJ Tucker, P Proks, FM Ashcroft

Abstract:

1. ATP-sensitive potassium (KATP) channels are composed of pore-forming Kir6.2 and regulatory SUR subunits. ATP inhibits the channel by interacting with Kir6.2, while sulphonylureas block channel activity by interaction with a high-affinity site on SUR1 and a low-affinity site on Kir6.2. MgADP and diazoxide interact with SUR1 to promote channel activity. 2. We examined the effect of N-terminal deletions of Kir6.2 on the channel open probability, ATP sensitivity and sulphonylurea sensitivity by recording macroscopic currents in membrane patches excised from Xenopus oocytes expressing wild-type or mutant Kir6.2/SUR1. 3. A 14 amino acid N-terminal deletion (DeltaN14) did not affect the gating, ATP sensitivity or tolbutamide block of a truncated isoform of Kir6.2, Kir6.2DeltaC26, expressed in the absence of SUR1. Thus, the N-terminal deletion does not alter the intrinsic properties of Kir6.2. 4. When Kir6.2DeltaN14 was coexpressed with SUR1, the resulting KATP channels had a higher open probability (Po = 0.7) and a lower ATP sensitivity (Ki = 196 microM) than wild-type (Kir6.2/SUR1) channels (Po = 0.32, Ki = 28 microM). High-affinity tolbutamide block was also abolished. 5. Truncation of five or nine amino acids from the N-terminus of Kir6.2 also enhanced the open probability, and reduced both the ATP sensitivity and the fraction of high-affinity tolbutamide block, although to a lesser extent than for the DeltaN14 deletion. Site-directed mutagenesis suggests that hydrophobic residues in Kir6. 2 may be involved in this effect. 6. The reduced ATP sensitivity of Kir6.2DeltaN14 may be explained by the increased Po. However, when the Po was decreased (by ATP), tolbutamide was unable to block Kir6. 2DeltaN14/SUR1-K719A,K1385M currents, despite the fact that the drug inhibited Kir6.2-C166S/SUR1-K719A,K1385M currents (which in the absence of ATP have a Po of > 0.8 and are not blocked by tolbutamide). Thus the N-terminus of Kir6.2 may be involved in coupling sulphonylurea binding to SUR1 to closure of the Kir6.2 pore.