Strong constraints on neutrino nonstandard interactions from TeV-scale $\nu_\mu$ disappearance at IceCube

(2022)

Authors:

IceCube Collaboration, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, JM Alameddine, AA Alves, NM Amin, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, A Balagopal V., SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, K-H Becker, J Becker Tjus, J Beise, C Bellenghi, S Benda, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, B Brinson, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, Z Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, D Delgado López, H Dembinski, K Deoskar, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, AR Fazely, A Fedynitch, N Feigl, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, P Fürst, TK Gaisser, J Gallagher, E Ganster, A Garcia, S Garrappa, L Gerhardt, A Ghadimi, C Glaser, T Glauch, T Glüsenkamp, JG Gonzalez, S Goswami, D Grant, T Grégoire, S Griswold, C Günther, P Gutjahr, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, M Ha Minh, K Hanson, J Hardin, AA Harnisch, A Haungs, D Hebecker, K Helbing, F Henningsen, EC Hettinger, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, R Hoffmann, K Hoshina, F Huang, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, K Hymon, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, M Jin, BJP Jones, D Kang, W Kang, X Kang, A Kappes, D Kappesser, L Kardum, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, K Kin, T Kintscher, J Kiryluk, SR Klein, R Koirala, H Kolanoski, T Kontrimas, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, T Kozynets, E Kun, N Kurahashi, N Lad, C Lagunas Gualda, JL Lanfranchi, MJ Larson, F Lauber, JP Lazar, JW Lee, K Leonard, A Leszczyńska, Y Li, M Lincetto, QR Liu, M Liubarska, E Lohfink, CJ Lozano Mariscal, L Lu, F Lucarelli, A Ludwig, W Luszczak, Y Lyu, WY Ma, J Madsen, KBM Mahn, Y Makino, S Mancina, IC Mari{ş}, I Martinez-Soler, R Maruyama, S McCarthy, T McElroy, F McNally, JV Mead, K Meagher, S Mechbal, A Medina, M Meier, S Meighen-Berger, J Micallef, D Mockler, T Montaruli, RW Moore, R Morse, M Moulai, R Naab, R Nagai, U Naumann, J Necker, LV Nguy{\~{ê}}n, H Niederhausen, MU Nisa, SC Nowicki, A Obertacke Pollmann, M Oehler, B Oeyen, A Olivas, E O'Sullivan, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, L Paul, C Pérez de los Heros, L Peters, J Peterson, S Philippen, S Pieper, M Pittermann, A Pizzuto, M Plum, Y Popovych, A Porcelli, M Prado Rodriguez, B Pries, GT Przybylski, C Raab, J Rack-Helleis, A Raissi, M Rameez, K Rawlins, IC Rea, Z Rechav, A Rehman, P Reichherzer, R Reimann, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, EJ Roberts, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk Cantu, I Safa, J Saffer, SE Sanchez Herrera, A Sandrock, M Santander, S Sarkar, S Sarkar, K Satalecka, M Schaufel, H Schieler, S Schindler, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, G Schwefer, S Sclafani, D Seckel, S Seunarine, A Sharma, S Shefali, N Shimizu, M Silva, B Skrzypek, B Smithers, R Snihur, J Soedingrekso, D Soldin, C Spannfellner, GM Spiczak, C Spiering, J Stachurska, M Stamatikos, T Stanev, R Stein, J Stettner, T Stezelberger, T Stürwald, T Stuttard, GW Sullivan, I Taboada, S Ter-Antonyan, J Thwaites, S Tilav, F Tischbein, K Tollefson, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, CF Turley, JP Twagirayezu, B Ty, MA Unland Elorrieta, N Valtonen-Mattila, J Vandenbroucke, N van Eijndhoven, D Vannerom, J van Santen, J Veitch-Michaelis, S Verpoest, C Walck, W Wang, TB Watson, C Weaver, P Weigel, A Weindl, MJ Weiss, J Weldert, C Wendt, J Werthebach, M Weyrauch, N Whitehorn, CH Wiebusch, DR Williams, M Wolf, K Woschnagg, G Wrede, J Wulff, XW Xu, JP Yanez, E Yildizci, S Yoshida, S Yu, T Yuan, Z Zhang, P Zhelnin

Regimes of cosmic-ray diffusion in Galactic turbulence.

SN applied sciences 4:1 (2022) 15

Authors:

P Reichherzer, L Merten, J Dörner, J Becker Tjus, MJ Pueschel, EG Zweibel

Abstract:

Cosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at > 5  kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.

Building high accuracy emulators for scientific simulations with deep neural architecture search

Machine Learning: Science and Technology IOP Science 3:1 (2021) 015013

Authors:

MF Kasim, D Watson-Parris, L Deaconu, S Oliver, Peter Hatfield, DH Froula, Gianluca Gregori, M Jarvis, Samar Khatiwala, J Korenaga, Jonas Topp-Mugglestone, E Viezzer, Sam Vinko

Abstract:

Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully emulates simulations in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.

Observation of the gamma-ray binary HESS J0632+057 with the HESS, MAGIC, and VERITAS telescopes

Astrophysical Journal IOP Publishing 923:2 (2021) 241

Authors:

Cb Adams, W Benbow, A Brill, G Cotter, S Spencer

Abstract:

The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 ± 4.4 days is reported, consistent with the period of 317.3 ± 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.

Anisotropic cosmic-ray diffusion in isotropic Kolmogorov turbulence

ArXiv 2112.11827 (2021)

Authors:

P Reichherzer, J Becker Tjus, EG Zweibel, L Merten, MJ Pueschel