GeV electron beams from a centimetre-scale accelerator

Nature Physics 2 (2006) 696-699

Authors:

SM Hooker, W. P. Leemans, B. Nagler, Anthony J. Gonsalves

Developments in laser-driven plasma accelerators

Nature Photonics 7:10 (2013) 775-782

Abstract:

Laser-driven plasma accelerators provide acceleration gradients that are three orders of magnitude greater than those generated by conventional accelerators, offering the potential to shrink the length of accelerators by the same factor. To date, laser acceleration of electron beams to produce particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages that are only a few centimetres long. This Review describes the operation principles of laser-driven plasma accelerators, and gives an overview of their development from their proposal in 1979 to recent demonstrations. Potential applications of plasma accelerators are described, and the challenges that must be overcome before they can become practical tools are discussed. © 2013 Macmillan Publishers Limited.

High brightness, symmetric electron bunch generation in a plasma wakefield accelerator via a radially-polarized plasma photocathode

ArXiv 2505.11387 (2025)

Authors:

James Chappell, Emily Archer, Roman Walczak, Simon Hooker

Contribution of ALEGRO to the Update of the European Strategy on Particle Physics

(2025)

Authors:

B Cros, P Muggli, L Corner, J Farmer, M Ferarrio, S Gessner, L Gizzi, E Gschwendtner, M Hogan, S Hooker, W Leemans, C Lindstrøm, J List, A Maier, J Osterhoff, P Piot, J Power, I Pogorelsky, M Turner, J-L Vay, J Wood

On the localization of the high-intensity region of simultaneous space-time foci

Optics Express Optica Publishing Group 33:4 (2025) 7645

Authors:

Emily Archer, Bangshan Sun, Roman Walczak, Martin Booth, Simon Hooker

Abstract:

<jats:p>Simultaneous space-time focusing (SSTF) is sometimes claimed to reduce the longitudinal extent of the high-intensity region near the focus, in contradiction to the original work on this topic. Here we seek to address this confusion by using numerical and analytical methods to investigate the degree of localization of the spatio-temporal intensity of an SSTF pulse. The analytical method is found to be in excellent agreement with numerical calculations and yields, for bi-Gaussian input pulses, expressions for the three-dimensional spatio-temporal intensity profile of the SSTF pulse, and for the on-axis bandwidth, pulse duration, and pulse-front tilt (PFT) of the SSTF pulse. To provide further insight, we propose a method for determining the transverse input profile of a non-SSTF pulse with equivalent spatial focusing. We find that the longitudinal variations of the peak axial intensities of the SSTF and spatially equivalent (SE) pulses are the same, apart from a constant factor, and hence that SSTF does not constrain the region of high intensity more than a non-SSTF pulse with equivalent focusing. We demonstrate that a simplistic method for calculating the pulse intensity exaggerates the degree of intensity localization, unless the spatio-temporal couplings inherent to SSTF pulses are accounted for.</jats:p>