Hi intensity mapping with the MIGHTEE Survey: first results of the Hi power spectrum

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:1 (2025) 476-493

Authors:

Aishrila Mazumder, Laura Wolz, Zhaoting Chen, Sourabh Paul, Mario G Santos, Matt Jarvis, Junaid Townsend, Srikrishna Sekhar, Russ Taylor

Abstract:

We present the first results of the H i intensity mapping power spectrum analysis with the MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) survey. We use data covering 4 square degrees in the COSMOS field using a frequency range of 962.5–1008.42 MHz, equivalent to H i emission in . The data consist of 15 pointings with a total of 94.2 h on-source. We verify the suitability of the MIGHTEE data for H i intensity mapping by testing for residual systematics across frequency, baselines, and pointings. We also vary the window used for H i signal measurements and find no significant improvement using stringent Fourier mode cuts. We compute the H i power spectrum at scales in autocorrelation as well as cross-correlation between observational scans using power spectrum domain averaging for pointings. We report consistent upper limits of 29.8 mK Mpc from the 2 cross-correlation measurements and 25.82 mK Mpc from autocorrelation at 2 Mpc.The low signal-to-noise ratio in this data potentially limits our ability to identify residual systematics, which will be addressed in the future by incorporating more data in the analysis.

MIGHTEE-HI: The direct detection of neutral hydrogen in galaxies at $z>0.25$

(2025)

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Varasteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong

A Multi-wavelength Characterization of the 2023 Outburst of MAXI J1807+132: Manifestations of Disk Instability and Jet Emission

(2025)

Authors:

Sandeep K Rout, M Cristina Baglio, Andrew Hughes, David M Russell, DM Bramich, Payaswini Saikia, Kevin Alabarta, Montserrat Armas Padilla, Sergio Campana, Stefano Covino, Paolo D'Avanzo, Rob Fender, Paolo Goldoni, Jeroen Homan, Fraser Lewis, Nicola Masetti, Sara Motta, Teo Munoz-Darias, Alessandro Papitto, Thomas D Russell, Gregory Sivakoff, Jakob van den Eijnden

A Persistent Disk Wind and Variable Jet Outflow in the Neutron-star Low-mass X-Ray Binary GX 13+1

The Astrophysical Journal American Astronomical Society 986:1 (2025) 41

Authors:

Daniele Rogantini, Jeroen Homan, Richard M Plotkin, Maureen van den Berg, James Miller-Jones, Joey Neilsen, Deepto Chakrabarty, Rob P Fender, Norbert Schulz

Abstract:

In low-mass X-ray binaries (LMXBs), accretion flows are often associated with either jet outflows or disk winds. Studies of LMXBs with luminosities up to roughly 20% of the Eddington limit indicate that these outflows generally do not co-occur, suggesting that disk winds might inhibit jets. However, previous observations of LMXBs accreting near or above the Eddington limit show that jets and winds can potentially coexist. To investigate this phenomenon, we carried out a comprehensive multiwavelength campaign (using the Very Large Array (VLA), Chandra/High Energy Transmission Grating Spectrometer (HETG), and NICER) on the near-Eddington neutron-star Z-source LMXB GX 13+1. NICER and Chandra/HETG observations tracked GX 13+1 across the entire Z track during high Eddington rates, detecting substantial resonance absorption features originating from the accretion disk wind in all X-ray spectra, which implies a persistent wind presence. Simultaneous VLA observations captured a variable radio jet, with radio emission notably strong during all flaring branch observations—contrary to typical behavior in Z sources—and weaker when the source was on the normal branch. Interestingly, no clear correlation was found between the radio emission and the wind features. Analysis of VLA radio light curves and simultaneous Chandra/HETG spectra demonstrates that an ionized disk wind and jet outflow can indeed coexist in GX 13+1, suggesting that their launching mechanisms are not necessarily linked in this system.

Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Counts-in-cells statistics

Astronomy & Astrophysics EDP Sciences 698 (2025) a148

Authors:

Morteza Pashapour-Ahmadabadi, Lukas Böhme, Thilo M Siewert, Dominik J Schwarz, Catherine L Hale, Caroline Heneka, Prabhakar Tiwari, Jinglan Zheng