A diagnostic kit for optical emission lines shaped by accretion disc winds
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 146-166
Abstract:
Blueshifted absorption is the classic spectroscopic signature of an accretion disc wind in X-ray binaries and cataclysmic variables (CVs). However, outflows can also create pure emission lines, especially at optical wavelengths. Therefore, developing other outflow diagnostics for these types of lines is worthwhile. With this in mind, we construct a systematic grid of 3645 synthetic wind-formed line profiles for CVs with the radiative transfer code sirocco. Our grid yields a variety of line shapes: symmetric, asymmetric, single- to quadruple-peaked, and even P-Cygni profiles. About 20 per cent of these lines – our ‘Gold’ sample – have strengths and widths consistent with observations. We use this grid to test a recently proposed method for identifying wind-formed emission lines based on deviations in the wing profile shape: the ‘excess equivalent width diagnostic diagram’. We find that our Gold sample can preferentially populate the suggested ‘wind regions’ of this diagram. However, the method is highly sensitive to the adopted definition of the line profile ‘wing’. Hence, we propose a refined definition based on the full width at half-maximum to improve the interpretability of the diagnostic diagram. Furthermore, we define an approximate scaling relation for the strengths of wind-formed CV emission lines in terms of the outflow parameters. This relation provides a fast way to assess whether – and what kind of – outflow can produce an observed emission line. All our wind-based models are open-source and we provide an easy-to-use web-based tool to browse our full set of spectral profiles.Hi gas in the rejuvenated radio galaxy PKS 2014–55
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 285-291
Abstract:
We present new high-spectral-resolution MeerKAT observations of absorption against the central region of the restarted, giant, X-shaped radio galaxy PKS2014–55, which exhibits morphological evidence of three distinct cycles of activity. We report a wide component (FWHM 38 7 km ) redshifted to 96 50 km , a deep-narrow detection (FWHM 19 6 km ) which is redshifted to 160 40 km, and a shallow component (FWHM 22 6 km) redshifted to 240 40 km . One of the three components exceeds the typical rotational velocity of 100 km , suggesting complex kinematics of the inflowing gas. These observations support the correlation between the occurrence of absorption and the rejuvenation of radio activity.Erratum: “A Novel Technosignature Search in the Breakthrough Listen Green Bank Telescope Archive” (2025, AJ, 169, 222)
The Astronomical Journal American Astronomical Society 170:3 (2025) 194
Variability of X-ray polarization of Cyg X-1
Astronomy & Astrophysics EDP Sciences 701 (2025) a115
Abstract:
We present the results of a three-year X-ray, optical, and radio polarimetric monitoring campaign of the prototypical black hole X-ray binary Cyg X-1, conducted from 2022 to 2024. The X-ray polarization of Cyg X-1 was measured 13 times with the Imaging X-ray Polarimetry Explorer (IXPE), covering both hard and soft spectral states. The X-ray polarization degree (PD) in the hard state was found to be ≈4.0%, roughly twice as high as in the soft state, where it was around 2.2%. In both states, a statistically significant increase in PD with the energy was found. Moreover, a linear relation between PD and spectral hardness suggests a gradual and continuous evolution of the polarization properties, rather than an abrupt change of polarization production mechanism between states. The polarization angle (PA) was independent of the spectral state and showed no trend with the photon energy. The X-ray PA is well aligned with the orientation of the radio jet, as well as the optical and radio PAs. We find significant orbital changes of PA in the hard state, which we attribute to scattering of X-ray emission at the intrabinary structure. No significant superorbital variability in PD or PA was found at the period P so = 294 d. We detect, for the first time in this source, polarization of the radio emission, with the PA aligned with the jet, and a strong increase of the PD at a transition to the soft state. We also find no correlation between the X-ray and optical polarization; if any, there is a long-term anti-correlation between the X-ray PD and the radio PD.The peculiar hard state behaviour of the black hole X-ray binary Swift J1727.8−1613
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 1803-1816