Tracing AGN-Galaxy Co-Evolution with UV Line-Selected Obscured AGN
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2076
Abstract:
Abstract Understanding black hole–galaxy co-evolution and the role of AGN feedback requires complete AGN samples, including heavily obscured systems. Such sources are key to constraining the black hole accretion rate density over cosmic time, yet they are challenging to identify and characterise across most wavelengths. In this work, we present the first UV line–selected ([Ne v]3426 and C iv1549) sample of obscured AGN with full X-ray-to-radio coverage, assembled by combining data from the Chandra COSMOS Legacy survey, the COSMOS2020 UV–NIR catalogue, mid- and far-IR photometry from XID+, and radio observations from the VLA and MIGHTEE surveys. Using CIGALE to perform spectral energy distribution (SED) fitting, we analyse 184 obscured AGN at 0.6 < z < 1.2 and 1.5 < z < 3.1, enabling detailed measurements of AGN and host galaxy properties, and direct comparison with Simba hydrodynamical simulations. We find that X-ray and radio data are essential for accurate SED fits, with the radio band proving critical when X-ray detections are missing or in cases of poor IR coverage. Comparisons with matched non-active galaxies and simulations suggest that the [Ne v]-selected sources are in a pre-quenching stage, while the C iv-selected ones are likely quenched by AGN activity. Our results indicate that [Ne v] and C iv selections target galaxies in a transient phase of their co-evolution, characterised by intense, obscured accretion, and pave the way for future extensions with upcoming large area high-z spectroscopic surveys.A 15 Mpc rotating galaxy filament at redshift z = 0.032
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:4 (2025) 4306-4316
Abstract:
The Radio Flare and Multiwavelength Afterglow of the Short GRB 231117A: Energy Injection from a Violent Shell Collision
The Astrophysical Journal American Astronomical Society 994:1 (2025) 5-5
Abstract:
Radio Galaxy Zoo: morphological classification by Fanaroff–Riley designation using self-supervised pre-training
Monthly Notices of the Royal Astronomical Society Oxford University Press 544:4 (2025) staf1942
Abstract:
In this study, we examine over 14 000 radio galaxies finely selected from Radio Galaxy Zoo (RGZ) project and provide classifications for approximately 5900 FRIs and 8100 FRIIs. We present an analysis of these predicted radio galaxy morphologies for the RGZ catalogue, classified using a pre-trained radio galaxy foundation model that has been fine-tuned to predict Fanaroff–Riley (FR) morphology. As seen in previous studies, our results show overlap between morphologically classified FRI and FRII luminosity–size distributions and we find that the model’s confidence in its predictions is lowest in this overlap region, suggesting that source morphologies are more ambiguous. We identify the presence of low-luminosity FRII sources, the proportion of which, with respect to the total number of FRIIs, is consistent with previous studies. However, a comparison of the low-luminosity FRII sources found in this work with those identified by previous studies reveals differences that may indicate their selection is influenced by the choice of classification methodology. We investigate the impacts of both pre-training and fine-tuning data selection on model performance for the downstream classification task, and show that while different pre-training data choices affect model confidence they do not appear to cause systematic generalization biases for the range of physical and observational characteristics considered in this work; however, we note that the same is not necessarily true for fine-tuning. As automated approaches to astronomical source identification and classification become increasingly prevalent, we highlight training data choices that can affect the model outputs and propagate into downstream analyses.Warped Disk Galaxies. II. From the Cosmic Web to the Galactic Warp
The Astrophysical Journal American Astronomical Society 993:2 (2025) 205