Radio Galaxy Zoo: morphological classification by Fanaroff–Riley designation using self-supervised pre-training
Monthly Notices of the Royal Astronomical Society Oxford University Press 544:4 (2025) staf1942
Abstract:
In this study, we examine over 14 000 radio galaxies finely selected from Radio Galaxy Zoo (RGZ) project and provide classifications for approximately 5900 FRIs and 8100 FRIIs. We present an analysis of these predicted radio galaxy morphologies for the RGZ catalogue, classified using a pre-trained radio galaxy foundation model that has been fine-tuned to predict Fanaroff–Riley (FR) morphology. As seen in previous studies, our results show overlap between morphologically classified FRI and FRII luminosity–size distributions and we find that the model’s confidence in its predictions is lowest in this overlap region, suggesting that source morphologies are more ambiguous. We identify the presence of low-luminosity FRII sources, the proportion of which, with respect to the total number of FRIIs, is consistent with previous studies. However, a comparison of the low-luminosity FRII sources found in this work with those identified by previous studies reveals differences that may indicate their selection is influenced by the choice of classification methodology. We investigate the impacts of both pre-training and fine-tuning data selection on model performance for the downstream classification task, and show that while different pre-training data choices affect model confidence they do not appear to cause systematic generalization biases for the range of physical and observational characteristics considered in this work; however, we note that the same is not necessarily true for fine-tuning. As automated approaches to astronomical source identification and classification become increasingly prevalent, we highlight training data choices that can affect the model outputs and propagate into downstream analyses.Warped Disk Galaxies. II. From the Cosmic Web to the Galactic Warp
The Astrophysical Journal American Astronomical Society 993:2 (2025) 205
Abstract:
Galactic warps are common in disk galaxies. While often attributed to galaxy–galaxy tides, a nonspherical dark matter halo has also been proposed as a driver of disk warping. We investigate links among warp morphology, satellite distribution, and large-scale structure using the Sloan Digital Sky Survey catalog of warped disks compiled by W.-B. G. Zee et al. Warps are classified into 244 S- and 127 U-types, hosting 1373 and 740 satellites, respectively, and are compared to an unwarped control matched in stellar mass, redshift, and local density. As an indirect, population-level proxy for the host halo’s shape and orientation, we analyze the stacked spatial distribution of satellites. Warped hosts show a significant anisotropy: an excess at 45° < ϕ < 90° (measured from the host major axis), peaking at P(ϕ) ≃ 0.003, versus nearly isotropic controls. Satellites of S-type warps preferentially align with the nearest cosmic filament, whereas those of U-type warps are more often perpendicular. The incidence of warps increases toward filaments (rfila < 4 Mpc h−1), while the number of satellites around warped hosts remains approximately constant with filament distance, indicating a direct influence of the large-scale environment. We discuss possible links between galactic warps and the cosmic web, including anisotropic tidal fields and differences in evolutionary stage.Unprecedentedly bright X-ray flaring in Cygnus X-1 observed by INTEGRAL
Astronomy & Astrophysics EDP Sciences 703 (2025) A109-A109
Abstract:
MIGHTEE-H
i
: The
M
H
i
–
M
☆ relation of massive galaxies and the H
i
mass function at 0.25 <
z
< 0.5
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1857
Abstract:
MIGHTEE-H
i
: the direct detection of neutral hydrogen in galaxies at
z
> 0.25
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210