Getting More Out of Black Hole Superradiance: a Statistically Rigorous Approach to Ultralight Boson Constraints from Black Hole Spin Measurements
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1564
Abstract:
The dependence of the Type Ia Supernova colour–luminosity relation on their host galaxy properties
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:3 (2025) 2180-2203
Abstract:
Using the Dark Energy Survey 5-yr sample, we determine the properties of type Ia supernova (SN Ia) host galaxies across a wide multiwavelength range – from the optical to far-infrared – including data from the Herschel and Spitzer space telescopes. We categorize the SNe Ia into three distinct groups according to the distribution of their host galaxies on the star formation rate (SFR) – stellar mass () plane. Each region comprises host galaxies at distinct stages in their evolutionary pathways: Region 1 – low-mass hosts; Region 2 – high-mass, star-forming hosts and Region 3 – high-mass, passive hosts. We find SNe Ia in host galaxies located in Region 1 have the steepest slope (quantified by ) between their colours and luminosities, with . This differs at the significance level to SNe Ia in Region 3, which have the shallowest colour–luminosity slope with . After correcting SNe Ia in each subsample by their respective , events in Region 3 (high-mass, passive hosts) are mag () brighter, post-standardization. We conclude that future cosmological analyses should apply standardization relations to SNe Ia based upon the region in which the SN host galaxy lies in the SFR– plane. Alternatively, cosmological analyses should restrict the SN Ia sample to events whose host galaxies occupy a single region of this plane.A MeerKAT view of the parsec-scale jets in the black-hole X-ray binary GRS 1758-258
(2025)
Relativistic precessing jets powered by an accreting neutron star
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 544:1 (2025) L37-L44
Abstract:
Precessing relativistic jets launched by compact objects are rarely directly measured, and present an invaluable opportunity to better understand many features of astrophysical jets. In this Letter we present MeerKAT radio observations of the neutron star X-ray binary system (NSXB) Circinus X-1 (Cir X-1). We observe a curved S-shaped morphology on scales in the radio emission around Cir X-1. We identify flux density and position changes in the S-shaped emission on year time-scales, robustly showing its association with relativistic jets. The jets of Cir X-1 are still propagating with mildly relativistic velocities from the core, the first time such large scale jets have been seen from a NSXB. The position angle of the jet axis is observed to vary on year time-scales, over an extreme range of at least . The morphology and position angle changes of the jet are best explained by a smoothly changing launch direction, verifying suggestions from previous literature, and indicating that precession of the jets is occurring. Steady precession of the jet is one interpretation of the data, and if occurring, we constrain the precession period and half-opening angle to yr and , respectively, indicating precession in a different parameter space to similar known objects such as SS 433.Relativistic precessing jets powered by an accreting neutron star
(2025)