Large-scale radio bubbles around the black hole transient V4641 Sgr
(2026)
Evidence of mutually exclusive outflow forms from a black hole X-ray binary
Nature Astronomy (2026) 1-9
Abstract:
Accretion onto black holes often leads to the launch of outflows that substantially influence their surrounding environments. The two primary forms of these outflows are X-ray disk winds—hot, ionized gases ejected from the accretion disk—and relativistic jets, which are collimated streams of particles often expelled along the rotational axis of the black hole. While previous studies have revealed a general association between spectral states and different types of outflow, the physical mechanisms governing wind and jet formation remain debated. Here, using coordinated NICER and MeerKAT observations of the recurrent black hole X-ray binary 4U 1630–472, we identify a clear anti-correlation between X-ray disk winds and jets: during three recent outbursts, only one type of outflow is detected at a time. Notably, this apparent exclusivity occurs even as the overall accretion luminosity remains within the range expected for a standard thin disk, characteristic of the canonical soft state. These results suggest a competition between outflow channels that may depend on how the accretion energy is partitioned between the disk and the corona. Our findings provide observational constraints on jet and wind formation in X-ray binaries and offer a fresh perspective on the interplay between different modes of accretion-driven feedback.Discovery of a z ∼ 0.8 ultra steep spectrum radio halo in the MeerKAT-South Pole Telescope Survey
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:1 (2025) staf2022
Abstract:
The critical role of clumping in line-driven disc winds
Monthly Notices of the Royal Astronomical Society Oxford University Press 545:3 (2025) staf2183
Abstract:
Radiation pressure on spectral lines is a promising mechanism for powering disc winds from accreting white dwarfs (AWDs) and active galactic nuclei (AGNs). However, in radiation-hydrodynamic simulations, overionization reduces line opacity and quenches the line force, which suppresses outflows. Here, we show that small-scale clumping can resolve this problem. Adopting the microclumping approximation, our new simulations demonstrate that even modest volume filling factors () can dramatically increase the wind mass-loss rate by lowering its ionization state – raising and yielding for such modest filling factors. Clumpy wind models produce the UV resonance lines that are absent from smooth wind models. They can also reprocess a significant fraction of the disc luminosity and thus dramatically modify the broad-band optical/UV SED. Given that theory and observations indicate that disc winds are intrinsically inhomogeneous, clumping offers a physically motivated solution. Together, these results provide the first robust, self-consistent demonstration that clumping can reconcile line-driven wind theory with observations across AWDs and AGNs.A 15 Mpc rotating galaxy filament at redshift z = 0.032
Monthly Notices of the Royal Astronomical Society Oxford University Press 544:4 (2025) 4306-4316