Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlations with luminous red galaxies from eBOSS

Astronomy & Astrophysics EDP Sciences 698 (2025) a58

Authors:

Jinglan Zheng, Prabhakar Tiwari, Gong-Bo Zhao, Dominik J Schwarz, David Bacon, Stefano Camera, Caroline Heneka, Catherine Hale, Szymon J Nakoneczny, Morteza Pashapour-Ahmadabadi

A multidimensional view of a unified model for TDEs

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:4 (2025) 3069-3085

Authors:

Edward J Parkinson, Christian Knigge, Lixin Dai, Lars Lund Thomsen, James H Matthews, Knox S Long

Abstract:

Tidal disruption events (TDEs) can generate non-spherical, relativistic, and optically thick outflows. Simulations show that the radiation we observe is reprocessed by these outflows. According to a unified model suggested by these simulations, the spectral energy distributions (SEDs) of TDEs depend strongly on viewing angle: low [high] optical-to-X-ray ratios (OXRs) correspond to face-on [edge-on] orientations. Post-processing with radiative transfer codes has simulated the emergent spectra but has so far been carried out only in a quasi-1D framework, with three atomic species (H, He, and O). Here, we present 2.5D Monte Carlo radiative transfer simulations which model the emission from a non-spherical outflow, including a more comprehensive set of cosmically abundant species. While the basic trend of OXR increasing with inclination is preserved, the inherently multi-D nature of photon transport through the non-spherical outflow significantly affects the emergent SEDs. Relaxing the quasi-1D approximation allows photons to preferentially escape in (polar) directions of lower optical depth, resulting in a greater variation of bolometric luminosity as a function of inclination. According to our simulations, inclination alone may not fully explain the large dynamic range of observed TDE OXRs. We also find that including metals, other than O, changes the emergent spectra significantly, resulting in stronger absorption and emission lines in the extreme ultraviolet, as well as a greater variation in the OXR as a function of inclination. Whilst our results support previously proposed unified models for TDEs, they also highlight the critical importance of multi-D ionization and radiative transfer.

Gone with the Wind: JWST-MIRI Unveils a Strong Outflow from the Quiescent Stellar-Mass Black Hole A0620-00

(2025)

Authors:

Zihao Zuo, Gabriele Cugno, Joseph Michail, Elena Gallo, David M Russell, Richard M Plotkin, Fan Zou, M Cristina Baglio, Piergiorgio Casella, Fraser J Cowie, Rob Fender, Poshak Gandhi, Sera Markoff, Federico Vincentelli, Fraser Lewis, Jon M Miller, James CA Miller-Jones, Alexandra Veledina

The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky

Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e071

Authors:

Andrew Hopkins, Anna Kapinska, Joshua Marvil, Tessa Vernstrom, Jordan Collier, Ray Norris, Yjan Gordon, Stefan Duchesne, Lawrence Rudnick, Nikhel Gupta, Ettore Carretti, Craig Anderson, Shi Dai, Gulay Gürkan, David Parkinson, Isabella Prandoni, Simone Riggi, Chandra Shekhar Saraf, Yik Ki Ma, Miroslav D Filipović, Grazia Umana, Benedict Bahr-Kalus, Bärbel Silvia Koribalski, Emil Lenc, Catherine Laura Hale

Abstract:

We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.

Relativistic ejecta from stellar mass black holes: insights from simulations and synthetic radio images

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 1084-1106

Authors:

Katie Savard, James H Matthews, Rob Fender, Ian Heywood

Abstract:

We present numerical simulations of discrete relativistic ejecta from an X-ray binary (XRB) with initial conditions directly informed by observations. XRBs have been observed to launch powerful discrete plasma ejecta during state transitions, which can propagate up to parsec distances. Understanding these ejection events unveils new understanding of jet-launching, jet power, and jet–interstellar medium (ISM) interaction among other implications. Multifrequency quasi-simultaneous radio observations of ejecta from the black hole XRB MAXI J1820+070 produced both size and calorimetry constraints, which we use as initial conditions of a relativistic hydrodynamic simulation. We qualitatively reproduce the observed deceleration of the ejecta in a homogeneous ISM. Our simulations demonstrate that the ejecta must be denser than the ISM, the ISM be significantly low density, and the launch be extremely powerful, in order to propagate to the observed distances. The blob propagates and clears out a high-pressure low-density cavity in its wake, providing an explanation for this pre-existing low-density environment, as well as ‘bubble-like’ environments in the vicinity of XRBs inferred from other studies. As the blob decelerates, we observe the onset of instabilities and a long-lived reverse shock – these mechanisms convert kinetic to internal energy in the blob, responsible for in situ particle acceleration. We transform the outputs of our simulation into pseudo-radio images, incorporating the coverage of the MeerKAT and e-MERLIN telescopes from the original observations with real-sky background. Through this, we maximize the interpretability of the results and provide direct comparison to current data, as well as provide prediction capabilities.