Commensal Transient Searches with MeerKAT in Gamma-Ray Burst and Supernova Fields
(2024)
SIROCCO: a publicly available Monte Carlo ionization and radiative transfer code for astrophysical outflows
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:1 (2024) 879-904
Abstract:
<jats:title>ABSTRACT</jats:title> <jats:p>Outflows are critical components of many astrophysical systems, including accreting compact binaries and active galactic nuclei (AGN). These outflows can significantly affect a system’s evolution and alter its observational appearance by reprocessing the radiation produced by the central engine. sirocco (Simulating Ionization and Radiation in Outflows Created by Compact Objects – or ‘the code formerly known as python’) is a Sobolev-based Monte Carlo ionization and radiative transfer code. It is designed to simulate the spectra produced by any system with an azimuthally symmetric outflow, from spherical stellar winds to rotating, biconical accretion disc winds. Wind models can either be parametrized or imported, e.g. from hydrodynamical simulations. The radiation sources include an optically thick accretion disc and various central sources with flexible spectra and geometries. The code tracks the ‘photon packets’ produced by the sources in any given simulation as they traverse and interact with the wind. The code assumes radiative near-equilibrium, so the thermal and ionization state can be determined iteratively from these interactions. Once the physical properties in the wind have converged, sirocco can be used to generate synthetic spectra at a series of observer sightlines. Here, we describe the physical assumptions, operation, performance and limitations of the code. We validate it against tardis, cmfgen, and cloudy, finding good agreement, and present illustrative synthetic spectra from disc winds in cataclysmic variables, tidal disruption events, AGN, and X-ray binaries. sirocco is publicly available on GitHub, alongside its associated data, documentation and sample input files covering a wide range of astrophysical applications.</jats:p>Flux dependence of redshift distribution and clustering of LOFAR radio sources
Astronomy and Astrophysics EDP Sciences 692 (2024) A2
Abstract:
Context. We study the flux density dependence of the redshift distribution of low-frequency radio sources observed in the LOFAR Two-metre Sky Survey (LoTSS) deep fields and apply it to estimate the clustering length of the large-scale structure of the Universe, examining flux density limited samples (1 mJy, 2 mJy, 4 mJy and 8 mJy) of LoTSS wide field radio sources.Methods. We utilise and combine the posterior probability distributions of photometric redshift determinations for LoTSS deep field observations from three different fields (Boötes, Lockman hole and ELAIS-N1, together about 26 square degrees of sky), which are available for between 91% to 96% of all sources above the studied flux density thresholds and observed in the area covered by multi-frequency data. We estimate uncertainties by a bootstrap method. We apply the inferred redshift distribution on the LoTSS wide area radio sources from the HETDEX field (LoTSS-DR1; about 424 square degrees) and make use of the Limber approximation and a power-law model of three dimensional clustering to measure the clustering length, r0, for various models of the evolution of clustering.
Results. We find that the redshift distributions from all three LoTSS deep fields agree within expected uncertainties. We show that the radio source population probed by LoTSS at flux densities above 1 mJy has a median redshift of at least 0.9. At 2 mJy, we measure the clustering length of LoTSS radio sources to be r0 = (10.1 ± 2.6) h−1 Mpc in the context of the comoving clustering model.
Conclusions. Our findings are in agreement with measurements at higher flux density thresholds at the same frequency and with measurements at higher frequencies in the context of the comoving clustering model. Based on the inferred flux density limited redshift distribution of LoTSS deep field radio sources, the full wide area LoTSS will eventually cover an effective (source weighted) comoving volume of about 10 h−3 Gpc3.
A spatially resolved spectral analysis of giant radio galaxies with MeerKAT
Monthly Notices of the Royal Astronomical Society 537:1 (2024) 272-284
MeerKAT discovery of a MIGHTEE Odd Radio Circle
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 537:1 (2024) l42-l48