Magnetic-field-induced ordering in a spin-1/2 chiral chain

(2025)

Authors:

Rebecca Scatena, Alberto Hernandez-Melian, Benjamin M Huddart, Sam Curley, Robert Williams, Pascal Manuel, Stephen J Blundell, Zurab Guguchia, Zachary E Manson, Jamie L Manson, G Timothy Noe, John Singleton, Tom Lancaster, Paul A Goddard, Roger D Johnson

Electronic structure calculations for muon spectroscopy

Electronic Structure IOP Publishing (2025)

Authors:

Stephen Blundell, Miki Bonacci, Pietro Bonfà, Roberto De Renzi, Benjamin Huddart, Tom Lancaster, Leandro Miguel Liborio, Ifeanyi John Onuorah, Giovanni Pizzi, Francis Pratt, John Wilkinson

Spiral spin liquid noise

Proceedings of the National Academy of Sciences National Academy of Sciences 122:12 (2025) e2422498122

Authors:

Hiroto Takahashi, Chun-Chih Hsu, Fabian Jerzembeck, Jack Murphy, Jonathan Ward, Jack D Enright, Jan Knapp, Pascal Puphal, Masahiko Isobe, Yosuke Matsumoto, Hidenori Takagi, JC Séamus Davis, Stephen J Blundell

Abstract:

An emerging concept for identification of different types of spin liquids [C. Broholm et al., Science 367, eaay0668 (2020)] is through the use of spontaneous spin noise [S. Chatterjee, J. F. Rodriguez-Nieva, E. Demler, Phys. Rev. B 99, 104425 (2019)]. Here, we develop spin noise spectroscopy for spin liquid studies by considering Ca10Cr7O28, a material hypothesized to be either a quantum or a spiral spin liquid (SSL). By enhancing techniques introduced for magnetic monopole noise studies [R. Dusad et al., Nature 571, 234–239 (2019)], we measure the time and temperature dependence of spontaneous flux Φ(t, T) and thus magnetization M(t, T) of Ca10Cr7O28 samples. The resulting power spectral density of magnetization noise SMω, T reveals intense spin fluctuations with SMω, T∝ω-α(T) and 0.84

Muon Studies of Superconductors

Annual Review of Condensed Matter Physics Annual Reviews 16:1 (2025) 367-385

Field-orientation-dependent magnetic phases in GdRu2Si2 probed with muon-spin spectroscopy

Physical Review B American Physical Society (APS) 111:5 (2025) 54440

Authors:

Bm Huddart, A Hernández-Melián, Gda Wood, Da Mayoh, M Gomilšek, Z Guguchia, C Wang, Tj Hicken, Sj Blundell, G Balakrishnan, T Lancaster

Abstract:

<jats:p>Centrosymmetric <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"><a:mrow><a:msub><a:mi>GdRu</a:mi><a:mn>2</a:mn></a:msub><a:msub><a:mi>Si</a:mi><a:mn>2</a:mn></a:msub></a:mrow></a:math> exhibits a variety of multi-<b:math xmlns:b="http://www.w3.org/1998/Math/MathML"><b:mrow><b:mi>Q</b:mi></b:mrow></b:math> magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material's behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic <c:math xmlns:c="http://www.w3.org/1998/Math/MathML"><c:mi>c</c:mi></c:math> axis. Here, we present the results of muon-spin relaxation (<d:math xmlns:d="http://www.w3.org/1998/Math/MathML"><d:mrow><d:msup><d:mi>μ</d:mi><d:mo>+</d:mo></d:msup><d:mi>SR</d:mi></d:mrow></d:math>) measurements on single crystals of <e:math xmlns:e="http://www.w3.org/1998/Math/MathML"><e:mrow><e:msub><e:mi>GdRu</e:mi><e:mn>2</e:mn></e:msub><e:msub><e:mi>Si</e:mi><e:mn>2</e:mn></e:msub></e:mrow></e:math>. Our analysis is based on the computation of muon stopping sites and consideration of quantum zero-point motion effects of muons, allowing direct comparison with the underlying spin textures in the material. The muon site is confirmed experimentally, using angle-dependent measurements of the muon Knight shift. Using transverse-field <f:math xmlns:f="http://www.w3.org/1998/Math/MathML"><f:msup><f:mi>μ</f:mi><f:mo>+</f:mo></f:msup><f:mi>SR</f:mi></f:math> with fields applied along either the [001] or [100] crystallographic directions, we distinguish between the magnetic phases in this system via their distinct muon response, providing additional evidence for the skyrmion and meron-lattice phases, while also suggesting the existence of RKKY-driven muon hyperfine coupling. Zero-field <g:math xmlns:g="http://www.w3.org/1998/Math/MathML"><g:mrow><g:msup><g:mi>μ</g:mi><g:mo>+</g:mo></g:msup><g:mi>SR</g:mi></g:mrow></g:math> provides clear evidence for a transition between two distinct magnetically ordered phases at 39 K.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>