Entanglement between muon and I > 1/2 nuclear spins as a probe of charge environment

Physical Review Letters American Physical Society 129:9 (2022) 97205

Authors:

Pietro Bonfà, Jonathan Frassineti, John M Wilkinson, Giacomo Prando, Muhammad Maikudi Isah, Chennan Wang, Tiziana Spina, Boby Joseph, Vesna F Mitrović, Roberto De Renzi, Stephen J Blundell, Samuele Sanna

Abstract:

We report on the first example of quantum coherence between the spins of muons and quadrupolar nuclei. We reveal that these entangled states are highly sensitive to a local charge environment and thus, can be deployed as a functional quantum sensor of that environment. The quantum coherence effect was observed in vanadium intermetallic compounds which adopt the A15 crystal structure, and whose members include all technologically pertinent superconductors. Furthermore, the extreme sensitivity of the entangled states to the local structural and electronic environments emerges through the quadrupolar interaction with the electric field gradient due to the charge distribution at the nuclear (I > 1/2) sites. This case study demonstrates that positive muons can be used as a quantum sensing tool to also probe structural and charge-related phenomena in materials, even in the absence of magnetic degrees of freedom.

Spin dynamics, entanglement, and the nature of the spin liquid state in YbZnGaO4

Physical Review B American Physical Society 106:6 (2022) L060401

Authors:

Fl Pratt, F Lang, W Steinhardt, S Haravifard, Sj Blundell

Abstract:

Electron spin dynamics was studied down to 80 mK in the triangular-lattice quantum spin-liquid candidate YbZnGaO4 using muon spin relaxation, finding no evidence for freezing or ordering of the Yb spins. The muon spin relaxation rate can be represented by the sum of two contributions, one dependent on longitudinal magnetic field and the other independent of field. The field-dependent term follows the form expected for two-dimensional diffusion of mobile spin excitations. The spin-diffusion rate obtained for these excitations in the high temperature paramagnetic regime is comparable with the exchange coupling frequency J/h, reducing significantly in the low temperature quantum regime. This slowdown is assigned to the effect of quantum entanglement. The exchange coupling J is estimated to be 2.0(2) K from the crossover between the two regimes. The field-independent term is only weakly dependent on temperature, and at 15 K its absolute value is consistent with dipolar coupling of the muon to the three Yb moments closest to the muon site, where the spin dynamics of these moments is determined by exchange fluctuations. The temperature-dependent properties in the quantum regime are compared against the three possible U(1) spin-liquid models that have been obtained for the strongly spin-orbit coupled triangular lattice by Y.-D. Li, Y.-M. Lu, and G. Chen [Phys. Rev. B 96, 054445 (2017)]. The comparison with theory takes published specific heat and thermal conductivity data into account, along with the spin-diffusion rate obtained from the muons. It is found that the nodal spin-liquid model U1A11 containing both linear and quadratic nodes provides better agreement with experiment than either the U1A00 spinon Fermi surface (FS) model or the U1A01 model that contains only linear nodes.

Theory of simple glasses: exact solutions in infinite dimensions

Contemporary Physics Taylor and Francis 62:4 (2022) 247-248

A.C. susceptibility as a probe of low-frequency magnetic dynamics

(2022)

Authors:

CV Topping, SJ Blundell

Probing the magnetic polaron state in the ferromagnetic semiconductor HgCr2Se4 with muon-spin spectroscopy and resistance-fluctuation measurements

Physical Review B 105:6 (2022)

Authors:

M Mitschek, Tj Hicken, S Yang, Mn Wilson, Fl Pratt, C Wang, Sj Blundell, Z Li, Y Li, T Lancaster, J Müller

Abstract:

Combined resistance noise and muon-spin relaxation (μSR) measurements of the ferromagnetic semiconductor HgCr2Se4 suggest a degree of magnetoelectric coupling and provide evidence for the existence of isolated magnetic polarons. These form at elevated temperatures and undergo a percolation transition with a drastic enhancement of the low-frequency 1/f-type charge fluctuations at the insulator-to-metal transition at ∼95-98K in the vicinity of the magnetic ordering temperature TC∼105-107K. Upon approaching the percolation threshold from above, the strikingly unusual dynamics of a distinct two-level fluctuator superimposed on the 1/f noise can be described by a slowing down of the dynamics of a nanoscale magnetic cluster, a magnetic polaron, when taking into account an effective radius of the polaron depending on the spin correlation length. Coinciding temperature scales found in μSR and noise measurements suggest changes in the magnetic dynamics over a wide range of frequencies and are consistent with the existence of large polarized and domain-wall-like regions at low temperatures, that result from the freezing of spin dynamics at the magnetic polaron percolation transition.