Competing pairing interactions responsible for the large upper critical field in a stoichiometric iron-based superconductor CaKFe4As4

Physical Review B American Physical Society 101 (2020) 134502

Authors:

Matthew Bristow, William Knafo, Pascal Reiss, William Meier, Paul C Canfield, Stephen J Blundell, Amalia Coldea

Abstract:

The upper critical field of multiband superconductors is an important quantity that can reveal details about the nature of the superconducting pairing. Here we experimentally map out the complete upper-critical-field phase diagram of a stoichiometric superconductor, CaKFe4As4, up to 90 T for different orientations of the magnetic field and at temperatures down to 4.2K. The upper critical fields are extremely large, reaching values close to ∼3 Tc at the lowest temperature, and the anisotropy decreases dramatically with temperature, leading to essentially isotropic superconductivity at 4.2K. We find that the temperature dependence of the upper critical field can be well described by a two-band model in the clean limit with band-coupling parameters favoring intraband over interband interactions. The large Pauli paramagnetic effects together with the presence of the shallow bands is consistent with the stabilization of an FFLO state at low temperatures in this clean superconductor.

Observation of a neutron spin resonance in the bilayered superconductor CsCa2Fe4As4F2

(2020)

Authors:

DT Adroja, SJ Blundell, F Lang, H Luo, Z-C Wang, G-H Cao

Robustness of superconducting properties to transition metal substitution and impurity phases in Fe1-xVxSe

(2020)

Authors:

Franziska KK Kirschner, Daniel N Woodruff, Matthew J Bristow, Franz Lang, Peter J Baker, Simon J Clarke, Stephen J Blundell

Magnetic order and disorder in a quasi-two-dimensional quantum Heisenberg antiferromagnet with randomized exchange

(2020)

Authors:

F Xiao, WJA Blackmore, BM Huddart, M Gomilšek, TJ Hicken, C Baines, PJ Baker, FL Pratt, SJ Blundell, H Lu, J Singleton, D Gawryluk, MM Turnbull, KW Krämer, PA Goddard, T Lancaster

Enhancing easy-plane anisotropy in bespoke Ni(II) quantum magnets

Polyhedron 180 (2020)

Authors:

JL Manson, ZE Manson, A Sargent, DY Villa, NL Etten, WJA Blackmore, SPM Curley, RC Williams, J Brambleby, PA Goddard, A Ozarowski, MN Wilson, BM Huddart, T Lancaster, RD Johnson, SJ Blundell, J Bendix, KA Wheeler, SH Lapidus, F Xiao, S Birnbaum, J Singleton

Abstract:

© 2020 The Authors We examine the crystal structures and magnetic properties of several S = 1 Ni(II) coordination compounds, molecules and polymers, that include the bridging ligands HF2−, AF62− (A = Ti, Zr) and pyrazine or non-bridging ligands F−, SiF62−, glycine, H2O, 1-vinylimidazole, 4-methylpyrazole and 3-hydroxypyridine. Pseudo-octahedral NiN4F2, NiN4O2 or NiN4OF cores consist of equatorial Ni-N bonds that are equal to or slightly longer than the axial Ni-Lax bonds. By design, the zero-field splitting (D) is large in these systems and, in the presence of substantial exchange interactions (J), can be difficult to discriminate from magnetometry measurements on powder samples. Thus, we relied on pulsed-field magnetization in those cases and employed electron-spin resonance (ESR) to confirm D when J ≪ D. The anisotropy of each compound was found to be easy-plane (D > 0) and range from ≈ 8–25 K. This work reveals a linear correlation between the ratio d(Ni-Lax)/d(Ni-Neq) and D although the ligand spectrochemical properties may play an important role. We assert that this relationship allows us to predict the type of magnetocrystalline anisotropy in tailored Ni(II) quantum magnets.