Large easy-axis anisotropy in the one-dimensional magnet BaMo(PO4)2

Physical Review B 100, 214427 (2019)

Authors:

Aly H. Abdeldaim, Danis I. Badrtdinov, Alexandra S. Gibbs, Pascal Manuel, Helen C. Walker, Manh Duc Le, Chien Hung Wu, Dariusz Wardecki, Sten-Gunnar Eriksson, Yaroslav O. Kvashnin, Alexander A. Tsirlin, and Gøran J. Nilsen

Abstract:

Optimization of superconducting properties of the stoichiometric CaKFe4As4

Superconductor Science and Technology IOP Press 33:2 (2019) 025003

Authors:

SJ Singh, SJ Cassidy, M Bristow, S Blundell, SJ Clarke, Amalia Coldea

Abstract:

CaKFe4As4 (1144) is a unique stoichiometric iron-based superconductor which harbours high upper critical fields and large critical current densities. In this work, we describe a study to optimize the synthesis conditions of stoichiometric polycrystalline samples of CaKFe4As4 and asses their structural, magnetic and transport properties. The samples were prepared over a wide temperature range (900-1100°C) and the pure phase formation is centered around 955°C. Outside this temperature region, impurity phases of KFe2As2 and CaFe2As2 can also form. Magnetic susceptibility and resistivity measurements establish that the critical temperature reaches ~34 K for the optimum synthesis conditions and the critical current reaches 2 × 104 A-cm−2. The post-annealing process demonstrates the stability of the 1144 phase up to 500°C, however, under higher temperature annealing, phase degradation occurs. Our study indicates that the formation of phase-pure 1144 occurs over a much narrower window and its highly prone to multi-phase formation as compared with the 122 family. As a result, the superconducting properties are enhanced for the pure 1144 phase but they are likely to be affected by the inter and intra-granular behaviour originating from the microstructural nature of polycrystalline CaKFe4As4, similar to other iron-based superconductors. Based on our study, we construct the phase diagram for polycrystalline 1144 and compared it with that reported for 1144 single crystal.

A review of modern ophthalmic optics

CONTEMPORARY PHYSICS 60:4 (2019) 330-331

Exsolution of SrO during the topochemical conversion of LaSr3CoRuO8 to the oxyhydride LaSr3CoRuO4H4

Inorganic Chemistry American Chemical Society 58:21 (2019) 14863-14870

Authors:

L Jin, M Batuk, FKK Kirschner, F Lang, SJ Blundell, J Hadermann, Michael Hayward

Abstract:

Reaction of the n = 1 Ruddlesden-Popper oxide LaSr3CoRuO8 with CaH2 yields the oxyhydride phase LaSr3CoRuO4H4 via a topochemical anion exchange. Close inspection of the X-ray and neutron powder diffraction data in combination with HAADF-STEM images reveals that the nanoparticles of SrO are exsolved from the system during the reaction, with the change in cation stoichiometry accommodated by the inclusion of n > 1 (Co/Ru)nOn+1H2n "perovskite" layers into the Ruddlesden-Popper stacking sequence. This novel pseudotopochemical process offers a new route for the formation of n > 1 Ruddlesden-Popper structured materials. Magnetization data are consistent with a LaSr3Co+Ru2+O4H4 (Co+, d8, S = 1; Ru2+, d6, S = 0) oxidation/spin state combination. Neutron diffraction and μ+SR data show no evidence for long-range magnetic order down to 2 K, suggesting the diamagnetic Ru2+ centers impede the Co-Co magnetic-exchange interactions.

Probing magnetic order and disorder in the one-dimensional molecular spin chains CuF2(pyz) and [Ln(hfac)3(boaDTDA)] n (Ln  =  Sm, La) using implanted muons.

Journal of physics. Condensed matter : an Institute of Physics journal 31:39 (2019) 394002-394002

Authors:

T Lancaster, BM Huddart, RC Williams, F Xiao, KJA Franke, PJ Baker, FL Pratt, SJ Blundell, JA Schlueter, MB Mills, AC Maahs, KE Preuss

Abstract:

We present the results of muon-spin relaxation ([Formula: see text]SR) measurements on antiferromagnetic and ferromagnetic spin chains. In antiferromagnetic CuF2(pyz) we identify a transition to long range magnetic order taking place at [Formula: see text] K, allowing us to estimate a ratio with the intrachain exchange of [Formula: see text] and the ratio of interchain to intrachain exchange coupling as [Formula: see text]. The ferromagnetic chain [Sm(hfac)3(boaDTDA)] n undergoes an ordering transition at [Formula: see text] K, seen via a broad freezing of dynamic fluctuations on the muon (microsecond) timescale and implying [Formula: see text]. The ordered radical moment continues to fluctuate on this timescale down to 0.3 K, while the Sm moments remain disordered. In contrast, the radical spins in [La(hfac)3(boaDTDA)] n remain magnetically disordered down to T  =  0.1 K suggesting [Formula: see text].