Unconventional field-induced spin gap in an S=1/2 Chiral staggered chain

Physical Review Letters American Physical Society 122 (2019) 057207

Authors:

Jesse Liu, S Kittaka, Roger Johnson, T Lancaster, J Singleton, T Sakakibara, Y Kohama, J Van Tol, Arzhang Ardavan, BH Williams, SJ Blundell, ZE Manson, JL Manson, PA Goddard

Abstract:

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain ½CuðpymÞðH2OÞ4SiF6 · H2O (pym ¼ pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered g tensors, a rich low-temperature excitation spectrum, a staggered susceptibility, and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in nonchiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sineGordon model accounts well for the form of the temperature dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of ½CuðpymÞðH2OÞ4SiF6 · H2O, particularly a uniform Dzyaloshinskii-Moriya coupling and a fourfold periodic staggered field.

Magnetic Monopole Noise

(2019)

Authors:

Ritika Dusad, Franziska KK Kirschner, Jesse C Hoke, Benjamin Roberts, Anna Eyal, Felix Flicker, Graeme M Luke, Stephen J Blundell, JC Seamus Davis

Unconventional field-induced spin gap in an $S = 1/2$ chiral staggered chain

(2019)

Authors:

J Liu, S Kittaka, RD Johnson, T Lancaster, J Singleton, T Sakakibara, Y Kohama, J van Tol, A Ardavan, BH Williams, SJ Blundell, ZE Manson, JL Manson, PA Goddard

Collective classical and quantum fields

Contemporary Physics Taylor & Francis 60:1 (2019) 95-96

Quantum field theory lectures of Sidney Coleman

Contemporary Physics Taylor & Francis 60:1 (2019) 66-68