Ultra-high critical current densities, the vortex phase diagram and the effect of granularity of the stoichiometric high-Tc superconductor, CaKFe$_4$As$_4$

(2018)

Authors:

Shiv J Singh, Matthew Bristow, William Meier, Patrick Taylor, Stephen J Blundell, Paul C Canfield, Amalia I Coldea

Microscopic effects of Dy-doping in the topological insulator Bi2Te3

(2018)

Authors:

LB Duffy, N-J Steinke, JA Krieger, AI Figueroa, K Kummer, T Lancaster, SR Giblin, FL Pratt, SJ Blundell, T Prokscha, A Suter, S Langridge, VN Strocov, Z Salman, G van der Laan, T Hesjedal

Evidence for $J_{\rm eff} = 0$ ground state and defect-induced spin glass behaviour in the pyrochlore osmate Y$_{2}$Os$_{2}$O$_{7}$

(2018)

Authors:

NR Davies, CV Topping, H Jacobsen, AJ Princep, FKK Kirschner, MC Rahn, M Bristow, JG Vale, I da Silva, PJ Baker, Ch J Sahle, Y-F Guo, D-Y Yan, Y-G Shi, SJ Blundell, DF McMorrow, AT Boothroyd

Spin Jahn-Teller antiferromagnetism in CoTi$_2$O$_5$

(2018)

Authors:

Franziska KK Kirschner, Roger D Johnson, Franz Lang, Dmitry D Khalyavin, Pascal Manuel, Tom Lancaster, Dharmalingam Prabhakaran, Stephen J Blundell

Doped Sr2FeIrO6-Phase Separation and a Jeff ≠ 0 State for Ir5.

Inorganic chemistry 57:16 (2018) 10303-10311

Authors:

Jacob E Page, Craig V Topping, Alex Scrimshire, Paul A Bingham, Stephen J Blundell, Michael A Hayward

Abstract:

High-resolution synchrotron X-ray and neutron powder diffraction data demonstrate that, in contrast to recent reports, Sr2FeIrO6 adopts an I1̅ symmetry double perovskite structure with an a-b-c- tilting distortion. This distorted structure does not tolerate cation substitution, with low levels of A-site (Ca, Ba, La) or Fe-site (Ga) substitution leading to separation into two phases: a stoichiometric I1̅ phase and a cation-substituted, P21/ n symmetry, a-a-c+ distorted double perovskite phase. Magnetization, neutron diffraction, and 57Fe Mössbauer data show that, in common with Sr2FeIrO6, the cation substituted Sr2- xA xFe1- yGa yIrO6 phases undergo transitions to type-II antiferromagnetically ordered states at TN ∼ 120 K. However, in contrast to stoichiometric Sr2FeIrO6, cation substituted samples exhibit a further magnetic transition at TA ∼ 220 K, which corresponds to the ordering of Jeff ≠ 0 Ir5+ centers in the cation-substituted, P21/ n symmetry, double perovskite phases.