Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

8th International Conference on Inertial Fusion Sciences and Applications (IFSA 2013) 8–13 September 2013, Nara, Japan IOP Publishing Ltd. 688:1 (2016) 012071-012071

Authors:

T Morita, NL Kugland, W Wan, R Crowston, RP Drake, F Fiuza, Gianluca Gregori, C Huntington, T Ishikawa, M Koenig, C Kuranz, MC Levy, D Martinez, J Meinecke, F Miniati, CD Murphy, A Pelka, C Plechaty, R Presura, N Quirós, BA Remington, B Reville, JS Ross, DD Ryutov, Y Sakawa, L Steele, H Takabe, Y Yamaura, N Woolsey, HS Park

Abstract:

We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.

Relativistic intensity laser interactions with low-density plasmas

Journal of Physics: Conference Series IOP Publishing 688:1 (2016) 012126-012126

Authors:

L Willingale, PM Nilson, C Zulick, H Chen, RS Craxton, J Cobble, A Maksimchuk, Peter Norreys, TC Sangster, RHH Scott, C Stoeckl

Abstract:

© Published under licence by IOP Publishing Ltd. We perform relativistic-intensity laser experiments using the Omega EP laser to investigate channeling phenomena and particle acceleration in underdense plasmas. A fundamental understanding of these processes is of importance to the hole-boring fast ignition scheme for inertial confinement fusion. Proton probing was used to image the electromagnetic fields formed as the Omega EP laser pulse generated a channel through underdense plasma. Filamentation of the channel was observed, followed by self-correction into a single channel. The channel radius as a function of time was found to be in reasonable agreement with momentum- conserving snowplough models.

Spherical shock in the presence of an external magnetic field

Journal of Physics: Conference Series IOP Publishing: Conference Series 688:1 (2016) 012056

Authors:

Y Kuramitsu, S Matsukiyo, S Isayama, D Harada, T Oyama, R Fujino, Y Sakawa, T Morita, Y Yamaura, T Ishikawa, T Moritaka, T Sano, K Tomita, R Shimoda, Y Sato, K Uchino, A Pelka, R Crowston, N Woolsey, Gianluca Gregori, M Koenig, CL Yin, YT Li, K Zhang, H Takabe

Abstract:

We investigate spherical collisionless shocks in the presence of an external magnetic field. Spherical collisionless shocks are common resultant of interactions between a expanding plasma and a surrounding plasma, such as the solar wind, stellar winds, and supernova remnants. Anisotropies often observed in shock propagations and their emissions, and it is widely believed a magnetic field plays a major role. Since the local observations of magnetic fields in astrophysical plasmas are not accessible, laboratory experiments provide unique capability to investigate such phenomena. We model the spherical shocks in the universe by irradiating a solid spherical target surrounded by a plasma in the presence of a magnetic field. We present preliminary results obtained by shadowgraphy.

Thomson scattering measurement of a collimated plasma jet generated by a high-power laser system

Journal of Physics: Conference Series IOP Publishing: Conference Series 688 (2016) 012098

Authors:

T Ishikawa, Y Sakawa, T Morita, Y Yamaura, Y Kuramitsu, T Moritaka, T Sano, R Shimoda, K Tomita, K Uchino, S Matsukiyo, A Mizuta, N Ohnishi, R Crowston, N Woolsey, H Doyle, Gianluca Gregori, M Koenig, C Michaut, A Pelka, D Yuan, Y Li, K Zhang, J Zhong, F Wang, H Takabe

Abstract:

One of the important and interesting problems in astrophysics and plasma physics is collimation of plasma jets. The collimation mechanism, which causes a plasma flow to propagate a long distance, has not been understood in detail. We have been investigating a model experiment to simulate astrophysical plasma jets with an external magnetic field [Nishio et al., EPJ. Web of Conferences 59, 15005 (2013)]. The experiment was performed by using Gekko XII HIPER laser system at Institute of Laser Engineering, Osaka University. We shot CH plane targets (3 mm × 3 mm × 10 μm) and observed rear-side plasma flows. A collimated plasma flow or plasma jet was generated by separating focal spots of laser beams. In this report, we measured plasma jet structure without an external magnetic field with shadowgraphy, and simultaneously measured the local parameters of the plasma jet, i.e., electron density, electron and ion temperatures, charge state, and drift velocity, with collective Thomson scattering.

Transport coefficients of a relativistic plasma

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics American Physical Society 93:5 (2016) 1-16

Authors:

Steven J Rose, Oliver J Pike

Abstract:

In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, ed. M. A. Leontovich (1965), Vol. 1, p.174], we provide semi-analytical forms of the electrical resistivity, thermoelectric and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ~ 10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT = 20 keV due to relativistic effects