Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Elsevier 829 (2016) 383-385

Authors:

Robert Shalloo, L Corner, C Arran, J Cowley, G Cheung, C Thornton, R Walczak, SM Hooker

Abstract:

In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

Nuclear Instruments and Methods in Physics Research A Elsevier 829 (2016) 383-385

Authors:

Simon Hooker, L Corner, C Arran, J Cowley, G Cheung, C Thornton, R Walczak

Abstract:

In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

Efficient evaluation of collisional energy transfer terms for plasma particle simulations

Journal of Plasma Physics Cambridge University Press (CUP) 82:1 (2016) 905820107

Authors:

AE Turrell, M Sherlock, SJ Rose

Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

Nature Communications Nature Publishing 7:1 (2016) 10371

Authors:

J Vieira, RMGM Trines, EP Alves, RA Fonseca, JT Mendonça, R Bingham, Peter Norreys, LO Silva

Abstract:

Twisted Laguerre–Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser–matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high–energy-density science, compact plasma-based accelerators and light sources.

Simulations of the time and space-resolved X-ray transmission of a free-electron-laser-heated aluminium plasma

Journal of Physics B: Atomic, Molecular and Optical Physics IOP Publishing 49:3 (2016) 035603

Authors:

DS Rackstraw, SM Vinko, O Ciricosta, H-K Chung, RW Lee, JS Wark

Abstract:

We present simulations of the time and space-resolved transmission of a solid-density aluminium plasma as it is created and probed with the focussed output of an x-ray free-electron-laser with photon energies ranging from the K-edge of the cold material (1560 eV) to 1880 eV. We demonstrate how information about the temporal evolution of the charge states within the system can be extracted from the spatially resolved, yet time-integrated transmission images. We propose that such time-resolved measurements could in principle be performed with recently developed split-and-delay techniques.