Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals.
Science 341:6141 (2013) 56-59
Abstract:
Key insights into the behavior of materials can be gained by observing their structure as they undergo lattice distortion. Laser pulses on the femtosecond time scale can be used to induce disorder in a "pump-probe" experiment with the ensuing transients being probed stroboscopically with femtosecond pulses of visible light, x-rays, or electrons. Here we report three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser, providing insights into the physics of this phenomenon. Our results allow comparison and confirmation of predictive models based on continuum elasticity theory and molecular dynamics simulations.X-ray scattering from warm dense iron
High Energy Density Physics 9:3 (2013) 573-577
Abstract:
We have carried out X-ray scattering experiments on iron foil samples that have been compressed and heated using laser-driven shocks created with the VULCAN laser system at the Rutherford-Appleton Laboratory. This is the highest Z element studied in such experiments so far and the first time scattering from warm dense iron has been reported. Because of the importance of iron in telluric planets, the work is relevant to studies of warm dense matter in planetary interiors. We report scattering results as well as shock breakout results that, in conjunction with hydrodynamic simulations, suggest the target has been compressed to a molten state at several 100GPa pressure. Initial comparison with modelling suggests more work is needed to understand the structure factor of warm dense iron. © 2013.Two-Pulse Ionization Injection into Quasi-Linear Laser Wakefields
(2013)
Spectroscopic and X-Ray Scattering Models in SPECT3D
Institute of Electrical and Electronics Engineers (IEEE) (2013) 1-190
The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas
High Energy Density Physics 9:2 (2013) 258-263