Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

(2013)

Authors:

CM Huntington, F Fiuza, JS Ross, AB Zylstra, RP Drake, DH Froula, G Gregori, NL Kugland, CC Kuranz, MC Levy, CK Li, J Meinecke, T Morita, R Petrasso, C Plechaty, BA Remington, DD Ryutov, Y Sakawa, A Spitkovsky, H Takabe, H-S Park

Two-Pulse Ionization Injection into Quasilinear Laser Wakefields

Physics Review Letters 111 (2013) 155004

Authors:

N Bourgeois, J Cowley, SM Hooker

Developments in laser-driven plasma accelerators

Nature Photonics 7:10 (2013) 775-782

Abstract:

Laser-driven plasma accelerators provide acceleration gradients that are three orders of magnitude greater than those generated by conventional accelerators, offering the potential to shrink the length of accelerators by the same factor. To date, laser acceleration of electron beams to produce particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages that are only a few centimetres long. This Review describes the operation principles of laser-driven plasma accelerators, and gives an overview of their development from their proposal in 1979 to recent demonstrations. Potential applications of plasma accelerators are described, and the challenges that must be overcome before they can become practical tools are discussed. © 2013 Macmillan Publishers Limited.

Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

Physics of Plasmas 20:10 (2013)

Authors:

KA Humphrey, RMGM Trines, F Fiuza, DC Speirs, P Norreys, RA Cairns, LO Silva, R Bingham

Abstract:

We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount of seed pre-pulse produced. © 2013 AIP Publishing LLC.

Present status of fast ignition realization experiment and inertial fusion energy development

Nuclear Fusion 53:10 (2013)

Authors:

H Azechi, K Mima, S Shiraga, S Fujioka, H Nagatomo, T Johzaki, T Jitsuno, M Key, R Kodama, M Koga, K Kondo, J Kawanaka, N Miyanaga, M Murakami, K Nagai, M Nakai, H Nakamura, T Nakamura, T Nakazato, Y Nakao, K Nishihara, H Nishimura, T Norimatsu, P Norreys, T Ozaki, J Pasley, H Sakagami, Y Sakawa, N Sarukura, K Shigemori, T Shimizu, A Sunahara, T Taguchi, K Tanaka, K Tsubakimoto, Y Fujimoto, H Homma, A Iwamoto

Abstract:

One of the most advanced fast ignition programmes is the fast ignition realization experiment (FIREX). The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I, from late 2010 to early 2011, has demonstrated a high (>10%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that the ignition temperature can be achieved at laser energy below 10 kJ. Further improvement of the coupling efficiency is expected by introducing laser-driven magnetic fields. © 2013 IAEA, Vienna.