A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths
Physics of Plasmas 19:5 (2012)
Abstract:
A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of ∼20°. It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam. © 2012 American Institute of Physics.Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks
Physics of Plasmas 19:5 (2012)
Abstract:
A series of Omega experiments have produced and characterized high velocity counter-streaming plasma flows relevant for the creation of collisionless shocks. Single and double CH2 foils have been irradiated with a laser intensity of ∼ 1016 W/cm2. The laser ablated plasma was characterized 4 mm from the foil surface using Thomson scattering. A peak plasma flow velocity of 2000 km/s, an electron temperature of ∼ 110 eV, an ion temperature of ∼ 30 eV, and a density of ∼ 1018 cm -3 were measured in the single foil configuration. Significant increases in electron and ion temperatures were seen in the double foil geometry. The measured single foil plasma conditions were used to calculate the ion skin depth, c/ωpi ∼ 0.16 mm, the interaction length, lint, of ∼ 8 mm, and the Coulomb mean free path, λmfp ∼ 27 mm. With c/ωpi ≪ l int ≪λmfp, we are in a regime where collisionless shock formation is possible. © 2012 American Institute of Physics.Design considerations for unmagnetized collisionless-shock measurements in homologous flows
Astrophysical Journal 749:2 (2012)
Abstract:
The subject of this paper is the design of practical laser experiments that can produce collisionless shocks mediated by the Weibel instability. Such shocks may be important in a wide range of astrophysical systems. Three issues are considered. The first issue is the implications of the fact that such experiments will produce expanding flows that are approximately homologous. As a result, both the velocity and the density of the interpenetrating plasma streams will be time dependent. The second issue is the implications of the linear theory of the Weibel instability. For the experiments, the instability is in a regime where standard simplifications do not apply. It appears feasible but non-trivial to obtain adequate growth. The third issue is collisionality. The need to keep resistive magnetic-field dissipation small enough implies that the plasmas should not be allowed to cool substantially. © 2012. The American Astronomical Society. All rights reserved.Measurement of radiative shock properties by X-ray Thomson scattering
Physical Review Letters 108:14 (2012)
Abstract:
X-ray Thomson scattering has enabled us to measure the temperature of a shocked layer, produced in the laboratory, that is relevant to shocks emerging from supernovas. High energy lasers are used to create a shock in argon gas which is probed by x-ray scattering. The scattered, inelastic Compton feature allows inference of the electron temperature. It is measured to be 34 eV in the radiative precursor and ∼60eV near the shock. Comparison of energy fluxes implied by the data demonstrates that the shock wave is strongly radiative. © 2012 American Physical Society.Gigabar material properties experiments on nif and omega
AIP Conference Proceedings AIP Publishing 1426:1 (2012) 477-480