Electron energy deposition to the fusion target core for fast ignition
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
Heating of the target core for fast ignition by electron beams is investigated by two-dimensional collisional particle-in-cell simulations. It is found that the electron beams emitted from the core surface with the initial energy of 1.4MeV, 2.4MeV, and 4.2MeV can heat most efficiently the core with ρr = 0.75g/cm2, 1.5g/cm2, and 3g/cm2, respectively, when taking ρ 300g/cm3, where ρ and r are the mass density and radius of the core, respectively. © 2010 IOP Publishing Ltd.Hot electron generation and transport using Kα emission
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40μm diameter wire emulating a 40μm fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of pre-pulse level inside the cone by a factor of 50 reduces coupling by a factor of 3. © 2010 IOP Publishing Ltd.Inferring the electron temperature and density of shocked liquid deuterium using inelastic X-ray scattering
Journal of Physics: Conference Series 244:PART 4 (2010)
Abstract:
An experiment designed to launch laser-ablation-driven shock waves (10 to 70 Mbar) in a planar liquid-deuterium target on the OMEGA Laser System and to diagnose the shocked conditions using inelastic x-ray scattering is described. The electron temperature (Te) is inferred from the Doppler-broadened Compton-downshifted peak of the noncollective (αs = 1kλD > 1) x-ray scattering for Te > T Fermi. The electron density (ne) is inferred from the downshifted plasmon peak of the collective (αscatter > 1) x-ray scattering. A cylindrical layer of liquid deuterium is formed in a cryogenic cell with 8-μm-thick polyimide windows. The polyimide ablator is irradiated with peak intensities in the range of 1013 to 10 15 W/cm2 and shock waves are launched. Predictions from a 1-D hydrodynamics code show the shocked deuterium has a thickness of ∼0.1 mm with spatially uniform conditions. For the drive intensities under consideration, electron density up to ∼5 × 1023 cm -3 and electron temperature in the range of 10 to 25 eV are predicted. A laser-irradiated saran foil produces Cl Ly αemission. The spectrally resolved x-ray scattering is recorded at 90° for the noncollective scattering and at 40° for the collective scattering with a highly oriented pyrolytic graphite (HOPG) crystal spectrometer and an x-ray framing camera. © 2010 IOP Publishing Ltd.Magnetic collimation of petawatt driven fast electron beam for prospective fast ignition studies
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations. © 2010 IOP Publishing Ltd.Measurement of fast electrons spectra generated by interaction between solid target and peta watt laser
Journal of Physics: Conference Series 244:PART 2 (2010)