Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures

High Energy Density Physics 6:1 (2010) 15-20

Authors:

S Toleikis, RR Fäustlin, L Cao, T Döppner, S Düsterer, E Förster, C Fortmann, SH Glenzer, S Göde, G Gregori, R Irsig, T Laarmann, HJ Lee, B Li, J Mithen, KH Meiwes-Broer, A Przystawik, P Radcliffe, R Redmer, F Tavella, R Thiele, J Tiggesbäumker, NX Truong, I Uschmann, U Zastrau, T Tschentscher

Abstract:

We report on soft X-ray scattering experiments on cryogenic hydrogen and simple metal samples. As a source of intense, ultrashort soft X-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 150 μJ and durations 15-50 fs provide interaction with the sample leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft X-ray inelastic scattering from near-solid density hydrogen plasmas at few electron volt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft X-ray excitation of few electron volt solid-density plasmas in bulk metal samples could be studied by recording soft X-ray line and continuum emission integrated over emission times from fs to ns. © 2009 Elsevier B.V.

The Vulcan 10 PW project

Journal of Physics: Conference Series 244:PART 3 (2010)

Authors:

C Hernandez-Gomez, SP Blake, O Chekhlov, RJ Clarke, AM Dunne, M Galimberti, S Hancock, R Heathcote, P Holligan, A Lyachev, P Matousek, IO Musgrave, D Neely, PA Norreys, I Ross, Y Tang, TB Winstone, BE Wyborn, J Collier

Abstract:

The aim of this project is to establish a 10 PW facility on the Vulcan laser system capable of being focussed to intensities of at least 10 23 Wcm-2 and integrate this into a flexible and unique user facility This paper will present progress made in Phase one developing the 10PW Front End as well as the concept for the new Vulcan 10 PW facility. The new facility will be configured in a unique way to maximise the scientific opportunities presented through a combination with the existing capabilities already established on Vulcan. This ground breaking development will open up a range of new scientific opportunities. © 2010 IOP Publishing Ltd.

Transport of laser accelerated proton beams and isochoric heating of matter

Journal of Physics: Conference Series 244:PART 1 (2010)

Authors:

M Roth, I Alber, V Bagnoud, C Brown, R Clarke, H Daido, J Fernandez, K Flippo, S Gaillard, C Gauthier, S Glenzer, G Gregori, M Günther, K Harres, R Heathcote, A Kritcher, N Kugland, S Lepape, B Li, M Makita, J Mithen, C Niemann, F Nürnberg, D Offermann, A Otten, A Pelka, D Riley, G Schaumann, M Schollmeier, J Schütrumpf, M Tampo, A Tauschwitz

Abstract:

The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth. © 2010 IOP Publishing Ltd.

X-ray polarization spectroscopy from ultra-intense interactions

Journal of Physics: Conference Series 244:PART 2 (2010)

Authors:

N Booth, R Clarke, P Gallegos, L Gizzi, G Gregori, P Koester, L Labate, T Levato, B Li, M Makita, J Pasley, PP Rajeev, D Riley, E Wagenaars, JN Waugh, NC Woolsey

Abstract:

Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45° determines the X-ray s- and p- polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 1019 - 1021 Wcm-2. We observe at 45° the Ly-α doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1st order for sulphur and 3rd order for nickel. © 2010 IOP Publishing Ltd.

SURPRISES IN HIGH ENERGY DENSITY PHYSICS

World Scientific Publishing (2010) 96-111