Laser driven MeV proton beam focussing by auto-charged electrostatic lens configuration

AIP Conference Proceedings 1024 (2008) 173-182

Authors:

S Kar, K Markey, PT Simpson, C Bellei, JS Green, SR Nagel, S Kneip, DC Carroll, B Dromey, L Willingale, EL Clark, P McKenna, Z Najmudin, K Krushelnick, P Norreys, RJ Clarke, D Neely, M Borghesi, A Schiavi, M Zepf

Abstract:

Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 109V/m) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range. © 2008 American Institute of Physics.

Evidence of short-range screening in shock-compressed aluminum plasma

Physical Review Letters 101:7 (2008)

Authors:

E García Saiz, G Gregori, FY Khattak, J Kohanoff, S Sahoo, G Shabbir Naz, S Bandyopadhyay, M Notley, RL Weber, D Riley

Abstract:

We have investigated the angular variation in elastic x-ray scattering from a dense, laser-shock-compressed aluminum foil. A comparison of the experiment with simulations using an embedded atom potential in a molecular dynamics simulation shows a significantly better agreement than simulations based on an unscreened one-component plasma model. These data illustrate, experimentally, the importance of screening for the dense plasma static structure factor. © 2008 The American Physical Society.

X-ray scattering measurements of radiative heating and cooling dynamics.

Phys Rev Lett 101:4 (2008) 045003

Authors:

G Gregori, SH Glenzer, KB Fournier, KM Campbell, EL Dewald, OS Jones, JH Hammer, SB Hansen, RJ Wallace, OL Landen

Abstract:

Spectrally and time-resolved x-ray scattering is used to extract the temperature and charge state evolution in a near solid density carbon foam driven by a supersonic soft x-ray heat wave. The measurements show a rapid heating of the foam material (approximately 200 eV/ns) followed by a similarly fast decline in the electron temperature as the foam cools. The results are compared to an analytic power balance model and to results from radiation-hydrodynamics simulations. Finally, the combination of charge state and temperature extracted from this known density isochorically heated plasma is used to distinguish between dense plasma ionization balance models.

Molecular dynamics simulations of the Debye-Waller effect in shocked copper

Physical Review B - Condensed Matter and Materials Physics 78:1 (2008)

Authors:

WJ Murphy, A Higginbotham, JS Wark, N Park

Abstract:

We present an analysis of the directionally dependent x-ray structure factors (and, hence, intensities) predicted by nonequilibrium molecular dynamics simulations of statically compressed and shocked single crystals of copper, and comment on the feasibility of using experimentally measured intensities to infer temperature information. We further consider the behavior of the diffracted intensity from isentropically compressed samples. © 2008 The American Physical Society.

A reduced coupled-mode description for the electron-ion energy relaxation in dense matter

EPL 83:1 (2008)

Authors:

G Gregori, DO Gericke

Abstract:

We present a simplified model for the electron-ion energy relaxation in dense two-temperature systems that includes the effects of coupled collective modes. It also extends the standard Spitzer result to both degenerate and strongly coupled systems. Starting from the general coupled-mode description, we are able to solve analytically for the temperature relaxation time in warm dense matter and strongly coupled plasmas. This was achieved by decoupling the electron-ion dynamics and by representing the ion response in terms of the mode frequencies. The presented reduced model allows for a fast description of temperature equilibration within hydrodynamic simulations and an easy comparison for experimental investigations. For warm dense matter, both fluid and solid, the model gives a slower electron-ion equilibration than predicted by the classical Spitzer result. Copyright © EPLA, 2008.