Escape factors in zero-dimensional radiation-transfer codes

High Energy Density Physics Elsevier 4:1-2 (2008) 18-25

Authors:

GJ Phillips, JS Wark, FM Kerr, SJ Rose, RW Lee

Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities.

Physical review letters 100:16 (2008) 165002

Authors:

KU Akli, SB Hansen, AJ Kemp, RR Freeman, FN Beg, DC Clark, SD Chen, D Hey, SP Hatchett, K Highbarger, E Giraldez, JS Green, G Gregori, KL Lancaster, T Ma, AJ MacKinnon, P Norreys, N Patel, J Pasley, C Shearer, RB Stephens, C Stoeckl, M Storm, W Theobald, LD Van Woerkom, R Weber, MH Key

Abstract:

The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to approximately 5 keV with an axial temperature gradient of 0.6 microm scale length. Images of Ni Ly(alpha) show the hot region has 100 G bar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer.

Effect of relativistic plasma on extreme-ultraviolet harmonic emission from intense laser-matter interactions

Physical Review Letters 100:12 (2008)

Authors:

K Krushelnick, W Rozmus, U Wagner, FN Beg, SG Bochkarev, EL Clark, AE Dangor, RG Evans, A Gopal, H Habara, SPD Mangles, PA Norreys, APL Robinson, M Tatarakis, MS Wei, M Zepf

Abstract:

Experiments were performed in which intense laser pulses (up to 9×1019 W/cm2) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma. © 2008 The American Physical Society.

Line intensity enhancements in stellar coronal X-ray spectra due to opacity effects

(2008)

Authors:

SJ Rose, M Matranga, M Mathioudakis, FP Keenan, JS Wark

Laser-driven acceleration of electrons in a partially ionized plasma channel.

Phys Rev Lett 100:10 (2008) 105005

Authors:

TP Rowlands-Rees, C Kamperidis, S Kneip, AJ Gonsalves, SPD Mangles, JG Gallacher, E Brunetti, T Ibbotson, CD Murphy, PS Foster, MJV Streeter, F Budde, PA Norreys, DA Jaroszynski, K Krushelnick, Z Najmudin, SM Hooker

Abstract:

The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.