Of Proton Generation and Focusing for Fast Ignition Applications

Institute of Electrical and Electronics Engineers (IEEE) (2006) 371-371

Authors:

AJ MacKinnon, MH Key, K Akli, F Beg, RJ Clarke, D Clark, MH Chen, H-K Chung, S Chen, RR Freeman, JS Green, P Gu, G Gregori, K Highbarger, H Habara, SP Hatchett, D Hey, R Heathcote, JM Hill, JA King, R Kodama, JA Koch, K Lancaster, BF Lasinski, B Langdon, CD Murphy, PA Norreys, D Neely, M Nakatsutsumi, H Nakamura, N Patel, PK Patel, J Pasley, RA Snavely, RB Stephens, C Stoeckl, M Foord, M Tabakl, W Theobald, M Storm, K Tanaka, M Tampo, M Tolley, R Town, SC Wilks, L VanWoerkom, R Weber, T Yabuuchi, B Zhang

The effect of laser focusing conditions in laser wakefield acceleration experiments

Optics InfoBase Conference Papers (2006)

Authors:

AGR Thomas, SPD Mangles, Z Najmudin, CD Murphy, AE Dangor, W Rozmus, K Krushelnick, PS Foster, PA Norreys, JG Gallacher, DA Jaroszynski, WB Mori

Abstract:

The effect of focusing conditions in laser wakefield acceleration is studied. Short focal length geometries produce large dark currents while longer focal lengths produce narrow energy spread beams. © 2006 Optical Societ of America.

X-ray and proton measurements from petawatt laser interactions

Optics InfoBase Conference Papers (2006)

Authors:

PK Patel, AJ Mackinnon, R Heathcote, ME Foord, G Gregori, MH Key, JA King, S Moon, HS Park, J Pasley, W Theobald, R Town, R Van Maren, SC Wilks, B Zhang

Abstract:

We describe measurements characterizing the interaction of ultra-high intensity Petawatt laser pulses with solid targets. Experiments were performed on the Petawatt laser at RAL, and the Titan laser at LLNL. © 2006 Optical Society of America.

Analysis of the x-ray diffraction signal for the α- transition in shock-compressed iron: Simulation and experiment

Phys. Rev. B Condens. Matter Mater. Phys. 74:18 (2006)

Authors:

J Hawreliak, JD Colvin, JH Eggert, DH Kalantar, HE Lorenzana, J S. Stölken, HM Davies, TC Germann, BL Holian, K Kadau, PS Lomdahl, A Higginbotham, K Rosolankova, J Sheppard, JS Wark

Abstract:

Recent published work has shown that the phase change of shock-compressed iron along the [001] direction does transform to the [hexagonal close-packed (hcp)] phase similar to the case for static measurements. This article provides an in-depth analysis of the experiment and nonequilibrium molecular dynamics simulations, using x-ray diffraction in both cases to study the crystal structure upon transition. Both simulation and experiment are consistent with a compression and shuffle mechanism responsible for the phase change from body-centered cubic to hcp. Also both show a polycrystalline structure upon the phase transition, due to the four degenerate directions in which the phase change can occur. © 2006 The American Physical Society.

Energy extraction from pulsed amplified stimulated emission lasers operating under conditions of strong saturation

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 23:6 (2006) 1057-1067

Authors:

SM Hooker, DJ Spence