Radiation Transfer Effects on the Spectra of Laser-Generated Plasmas
Physical Review Letters American Physical Society (APS) 96:18 (2006) 185002
Electron-density scaling of conversion efficiency of laser energy into L-shell X-rays
Journal of Quantitative Spectroscopy and Radiative Transfer 99:1-3 (2006) 186-198
Abstract:
Laser-Produced plasmas at subcritical densities have proven to be efficient sources for X-ray production. In this context, we obtain experimental results from Kr and Xe gas-filled targets that were irradiated by the OMEGA (Laboratory for Laser Energetics, University of Rochester) laser. Nearly 40% of the laser energy was converted into X-rays in the L-shell-photon-energy range (≥ 1.6 keV) by a Kr-filled target. The conversion efficiency measurements were correlated with time-resolved plasma-temperature measurements done by means of a Thomson-scattering diagnostic. The measured range of temperatures, between 2-3.5 keV, is in good agreement with LASNEX radiation-hydrodynamics simulations. X-ray-cooling rates and charge-state distributions were computed using detailed atomic data from the HULLAC suite of codes. X-ray yields predicted by the cooling-rate calculations are compared to measured spectra, and good agreement is found for predictions made with highly-detailed atomic models. We find that X-ray conversion efficiency in Kr-filled targets is a strong function of temperature, and has an optimum density near 15% of the laser's critical density. © 2005 Elsevier Ltd. All rights reserved.Measurement of carbon ionization balance in high-temperature plasma mixtures by temporally resolved X-ray scattering
Journal of Quantitative Spectroscopy and Radiative Transfer 99:1-3 (2006) 225-237
Abstract:
We have measured carbon ionization balance in a multi-component plasma in the high-temperature, up to fully ionized, regime by spectrally resolved X-ray scattering. In particular, the measurements have been performed in an underdense (nX-ray probe development for collective scattering measurements in dense plasmas
Journal of Quantitative Spectroscopy and Radiative Transfer 99:1-3 (2006) 636-648
Abstract:
X-ray spectra and conversion efficiencies of the laser-produced chlorine Ly- α and K- α line radiation have been investigated to develop X-ray probes for the collective scattering regime. The Ly- α radiation was produced by either smoothed or un-smoothed laser beams with nanosecond-long laser pulses yielding high conversion efficiencies of up to 0.3% sufficient for X-ray scattering measurements. However, the time-integrated measurements show a significant dielectronic satellite emission on the red wing of the primary Ly- α line which must be avoided to resolve the plasmon feature in the scattering spectra. We find no red wing emission features for ultra-short pulse laser produced K-α radiation. The bandwidth of ΔE/E = 2 × 10-3 is suited for collective scattering, but the conversion efficiency falls short of the high values achieved for the Ly-α. These findings indicate that present laser-produced X-ray sources will restrict the choice of detectors and plasma conditions for collective X-ray scattering from dense plasmas.Line radiation effects in laboratory and astrophysical plasmas
Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier 99:1-3 (2006) 363-369