Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes
Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier 99:1-3 (2006) 712-729
Evidence of photon acceleration by laser wake fields
Physics of Plasmas 13:3 (2006)
Abstract:
Photon acceleration is the phenomenon whereby a light wave changes color when propagating through a medium whose index of refraction changes in time. This concept can be used to describe the spectral changes experienced by electromagnetic waves when they propagate in spatially and temporally varying plasmas. In this paper the detection of a large-amplitude laser-driven wake field is reported for the first time, demonstrating photon acceleration. Several features characteristic of photon acceleration in wake fields, such as splitting of the main spectral peak and asymmetries between the blueshift and redshift for large shifts, have been observed. The experiment is modeled using both a novel photon-kinetic code and a three-dimensional particle-in-cell code. In addition to the wide-ranging applications in the field of compact particle accelerators, the concept of wave kinetics can be applied to understanding phenomena in nonlinear optics, space physics, and fusion energy research. © 2006 American Institute of Physics.Material dynamics under extreme conditions of pressure and strain rate
Materials Science and Technology SAGE Publications 22:4 (2006) 474-488
Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers
Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 364:1840 (2006) 611-622
Abstract:
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a COThe generation of mono-energetic electron beams from ultrashort pulse laser - Plasma interactions
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364:1840 (2006) 663-677