Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas

Science Advances 8, 10 (2022)

Authors:

J. Meinecke, P. Tzeferacos, J. S. Ross, A. Bott, S. Feister, H.-S. Park, A. R. Bell, R. Blandford, R. L. Berger, R. Bingham, A. Casner, L. E. Chen, J. Foster, D. H. Froula, C. Goyon, D. Kalantar, M. Koenig, B. Lahmann, C. Li, Y. Lu, C. Palmer, R. D. Petrasso, H. Poole, B. Remington, B. Reville, A. Reyes, A. Rigby, D. Ryu, G. Swadling, A. Zylstra, F. Miniati, S. Sarkar, A. A. Schekochihin, D. Q. Lamb and G. Gregori

Abstract:

In conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer’s theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in galaxy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer’s theory. To address this problem, we have created a replica of such a system in a laser laboratory experiment. Our data show a reduction of heat transport by two orders of magnitude or more, leading to large temperature variations on small spatial scales (as is seen in cluster plasmas).

Femtosecond Diffraction and Dynamic High Pressure Science

(2022)

Authors:

Justin S Wark, Malcolm I McMahon, Jon H Eggert

Light-shining-through-wall axion detection experiments with a stimulating laser

Physical Review D - Particles, Fields, Gravitation and Cosmology American Physical Society 105 (2022) 035031

Abstract:

The collision of two real photons can result in the emission of axions. We investigate the performance of a modified light-shining-through-wall (LSW) axion search aiming to overcome the large signal suppression for axion masses ma ≥ 1 eV. We propose to utilize a third beam to stimulate the reconversion of axions into a measurable signal. We thereby find that with currently available high-power laser facilities we expect bounds at axion masses between 0.5–6 eV reaching gaγγ ≥ 10−7 GeV−1. Combining the use of optical lasers with currently operating x-ray free electron lasers, we extend the mass range to 10–100 eV.

Slip competition and rotation suppression in tantalum and copper during dynamic uniaxial compression

(2022)

Authors:

Patrick G Heighway, Justin S Wark

Towards a quantum fluid theory of correlated many-fermion systems from first principles

SciPost Physics SciPost 12:2 (2022) 062

Authors:

Zhandos Moldabekov, T Dornheim, Gianluca Gregori

Abstract:

Correlated many-fermion systems emerge in a broad range of phenomena in warm dense matter, plasmonics, and ultracold atoms. Quantum hydrodynamics (QHD) complements first-principles methods for many-fermion systems at larger scales. We illustrate the failure of the standard Bohm potential central to QHD for strong perturbations when the density perturbation is larger than about 10−3 of the mean density. We then extend QHD to this regime via the \emph{many-fermion Bohm potential} from first-principles. This may lead to more accurate QHD simulations beyond their common application domain in the presence of strong perturbations at scales unattainable with first-principles methods.