Methods for Extremely Sparse-Angle Proton Tomography

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society (2021)

Authors:

Ben T Spiers, Ramy Aboushelbaya, Qingsong Feng, Marko W Mayr, Iustin Ouatu, Robert W Paddock, Robin Timmis, Robin HW Wang, Peter A Norreys

Abstract:

Proton radiography is a widely-fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here, the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary foil targets. The methods are equally applicable to optical probes such as shadowgraphy and interferometry [M. Kasim et al. Phys. Rev. E 95, 023306 (2017)], thereby providing a disruptive new approach to three dimensional imaging across the physical sciences and engineering disciplines.

Methods for extremely sparse-angle proton tomography

Physical Review E American Physical Society 104:4 (2021) 045201

Authors:

Ben T Spiers, Ramy Aboushelbaya, Qingsong Feng, Marko W Mayr, Iustin Ouatu, Robert W Paddock, Robin Timmis, Robin H-W Wang, Peter A Norreys

Abstract:

Proton radiography is a widely fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary foil targets. A new configuration allowing production of more proton beams from a single short laser pulse is also presented and proposed for use in tandem with these analytical advancements.

Methods for extremely sparse-angle proton tomography

PHYSICAL REVIEW E American Physical Society (APS) 104:4 (2021) 45201

Authors:

Bt Spiers, R Aboushelbaya, Q Feng, Mw Mayr, I Ouatu, Rw Paddock, R Timmis, Rh-W Wang, Pa Norreys

Abstract:

Proton radiography is a widely fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary foil targets. A new configuration allowing production of more proton beams from a single short laser pulse is also presented and proposed for use in tandem with these analytical advancements.

Demonstration of kilohertz operation of Hydrodynamic Optical-Field-Ionized Plasma Channels

(2021)

Authors:

A Alejo, J Cowley, A Picksley, R Walczak, SM Hooker

GeV-scale accelerators driven by plasma-modulated pulses from kilohertz lasers

(2021)

Authors:

O Jakobsson, SM Hooker, R Walczak