Inverse problem instabilities in large-scale modelling of matter in extreme conditions

Physics of Plasmas AIP Publishing 26:11 (2019) 112706

Authors:

MF Kasim, TP Galligan, J Topp-Mugglestone, G Gregori, Sam Vinko

Abstract:

Our understanding of physical systems often depends on our ability to match complex computational modeling with the measured experimental outcomes. However, simulations with large parameter spaces suffer from inverse problem instabilities, where similar simulated outputs can map back to very different sets of input parameters. While of fundamental importance, such instabilities are seldom resolved due to the intractably large number of simulations required to comprehensively explore parameter space. Here, we show how Bayesian inference can be used to address inverse problem instabilities in the interpretation of x-ray emission spectroscopy and inelastic x-ray scattering diagnostics. We find that the extraction of information from measurements on the basis of agreement with simulations alone is unreliable and leads to a significant underestimation of uncertainties. We describe how to statistically quantify the effect of unstable inverse models and describe an approach to experimental design that mitigates its impact.

Wakefields in a cluster plasma

Physical Review Special Topics: Accelerators and Beams American Physical Society 22:11 (2019) 113501

Authors:

M Mayr, L Ceurvorst, M Kasim, J Sadler, B Spiers, K Glize, A Savin, N Bourgeois, F Keeble, A Ross, D Symes, R Aboushelbaya, R Fonseca, J Holloway, N Ratan, R Trines, R Wang, R Bingham, P Burrows, M Wing, R Pattathil, Peter Norreys

Abstract:

We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape of these wakefields is captured for the first time. The wavefronts are observed to curve backwards, in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters, the first wakefield period is longer than those trailing it. The features of the data are well described by fully relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-dimensional, nonlinear wakefield in a cluster plasma.

Reply to: Reconsidering X-ray plasmons

NATURE PHOTONICS 13:11 (2019) 751-753

Authors:

Lb Fletcher, Hj Lee, T Doppner, E Galtier, B Nagler, P Heimann, C Fortmann, S LePape, T Ma, M Millot, A Pak, D Turnbull, Da Chapman, Do Gericke, J Vorberger, G Gregori, B Barbrel, Rw Falcone, C-C Kao, H Nuhn, J Welch, U Zastrau, P Neumayer, Jb Hastings, Sh Glenzer

Ab initio simulations and measurements of the free-free opacity in aluminum

Physical Review E American Physical Society 100:4 (2019) 043207

Authors:

Patrick Hollebon, O Ciricosta, MP Desjarlais, C Cacho, C Spindloe, E Springate, ICE Turcu, Justin Wark, Sam M Vinko

Abstract:

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.

Using sparse Gaussian processes for predicting robust inertial confinement fusion implosion yields

IEEE Transactions on Plasma Science IEEE (2019) 1-6

Authors:

Peter Hatfield, S Rose, R Scott, I Almosallam, S Roberts, M Jarvis