Molecular dynamics simulations of grain interactions in shock-compressed highly textured columnar nanocrystals
Physical Review Materials American Physical Society 3:8 (2019) 083602
Abstract:
While experimental and computational studies abound demonstrating the diverse range of phenomena caused by grain interactions under quasistatic loading conditions, far less attention has been given to these interactions under the comparatively dramatic conditions of shock compression. The consideration of grain interactions is essential within the context of contemporary shock-compression experiments that exploit the distinctive x-ray diffraction patterns of highly textured (and therefore strongly anisotropic) targets in order to interrogate local structural evolution. We present here a study of grain interaction effects in shock-compressed, body-centered cubic tantalum nanocrystals characterized by a columnar geometry and a strong fiber texture using large-scale molecular dynamics simulations. Our study reveals that contiguous grains deform cooperatively in directions perpendicular to the shock, driven by the gigapascal-scale stress gradients induced over their boundaries by the uniaxial compression, and in so doing are able to reach a state of reduced transverse shear stress. We compare the extent of this relaxation for two different columnar geometries (distinguished by their square or hexagonal cross-sections), and quantify the attendant change in the transverse elastic strains. We further show that cooperative deformation is able to replace ordinary plastic deformation mechanisms at lower shock pressures, and, under certain conditions, activate new mechanisms at higher pressures.Observation of He-like satellite lines of the H-like potassium K XIX emission
Astrophysical Journal American Astronomical Society 881:2 (2019) 92
Abstract:
We present measurements of the H-like potassium (K xix) X-ray spectrum and its He-like (K xviii) satellite lines, which are situated in the wavelength region between 3.34 and 3.39 Å, which has been of interest for the detection of dark matter. The measurements were taken with a high-resolution X-ray spectrometer from targets irradiated by a long-pulse (2 ns) beam from the Orion laser facility. We obtain experimental wavelength values of dielectronic recombination satellite lines and show that the ratio of the Lyα lines and their dielectronic satellite lines can be used to estimate the electron temperature, which in our case was about 1.5 ± 0.3 keV.Enhanced fluorescence from x-ray line coincidence pumping of K-pumped Cl and Mg-pumped Ge plasmas
Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 11111 (2019)
Field reconstruction from proton radiography of intense laser driven magnetic reconnection
Physics of Plasmas AIP Publishing 26:8 (2019)
Abstract:
Magnetic reconnection is a process that contributes significantly to plasma dynamics and energy transfer in a wide range of plasma and magnetic field regimes, including inertial confinement fusion experiments, stellar coronae, and compact, highly magnetized objects like neutron stars. Laboratory experiments in different regimes can help refine, expand, and test the applicability of theoretical models to describe reconnection. Laser-plasma experiments exploring magnetic reconnection at a moderate intensity (IL ∼1014 W cm-2) have been performed previously, where the Biermann battery effect self-generates magnetic fields and the field dynamics studied using proton radiography. At high laser intensities (ILλL2>1018 Wcm-2μm2), relativistic surface currents and the time-varying electric sheath fields generate the azimuthal magnetic fields. Numerical modeling of these intensities has shown the conditions that within the magnetic field region can reach the threshold where the magnetic energy can exceed the rest mass energy such that σcold = B2/(μ0nemec2) > 1 [A. E. Raymond et al., Phys. Rev. E 98, 043207 (2018)]. Presented here is the analysis of the proton radiography of a high-intensity (∼1018 W cm-2) laser driven magnetic reconnection geometry. The path integrated magnetic fields are recovered using a "field-reconstruction algorithm" to quantify the field strengths, geometry, and evolution.Kinetic simulations of fusion ignition with hot-spot ablator mix
(2019)