Non-isentropic release of a shocked solid

Physical Review Letters American Physical Society 123:24 (2019) 245501

Authors:

PG Heighway, M Sliwa, D McGonegle, C Wehrenberg, CA Bolme, J Eggert, A Higginbotham, A Lazicki, HJ Lee, B Nagler, H-S Park, RE Rudd, RF Smith, MJ Suggit, D Swift, F Tavella, BA Remington, Justin Wark

Abstract:

We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.

Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality

Journal of Physics: Conference Series IOP Science 1350:1 (2019)

Authors:

PAP Nghiem, D Alesini, A Aschikhin, RW Assmann, T Audet, A Beck, A Chance, M Chen, E Chiadroni, A Cianchi, JA Clarke, ME Couprie, M Croia, B Cros, G Dattoli, A Del Dotto, N Delerue, U Dorda, A Ferran Pousa, M Ferrario, RA Fonseca, A Ghaith, A Giribono, LA Gizzi, A Helm, B Hidding, SM Hooker, MG Ibison, DA Jaroszynski, KO Kruchinin, L Labate, P Lee, X Li, FY Li, V Libov, B Marchetti, A Martinez De La Ossa, D Marx, F Massimo, F Mathieu, G Maynard, Z Mazzotta, TJ Mehrling, AY Molodozhentsev, A Mosnier, A Mostacci, Z Najmudin, F Nguyen, P Niknejadi, D Oumbarek Espinos

Abstract:

The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters.

Le ultime acquisizioni dal teatro di Terracina e l’eccezionale iscrizione del triumviro M. Emilio Lepido

Mélanges de l École française de Rome Antiquité OpenEdition (2019)

Authors:

Nicoletta Cassieri, Gian Luca Gregori, Jean-Baptiste Refalo-Bistagne

Inverse problem instabilities in large-scale modelling of matter in extreme conditions

Physics of Plasmas AIP Publishing 26:11 (2019) 112706

Authors:

MF Kasim, TP Galligan, J Topp-Mugglestone, G Gregori, Sam Vinko

Abstract:

Our understanding of physical systems often depends on our ability to match complex computational modeling with the measured experimental outcomes. However, simulations with large parameter spaces suffer from inverse problem instabilities, where similar simulated outputs can map back to very different sets of input parameters. While of fundamental importance, such instabilities are seldom resolved due to the intractably large number of simulations required to comprehensively explore parameter space. Here, we show how Bayesian inference can be used to address inverse problem instabilities in the interpretation of x-ray emission spectroscopy and inelastic x-ray scattering diagnostics. We find that the extraction of information from measurements on the basis of agreement with simulations alone is unreliable and leads to a significant underestimation of uncertainties. We describe how to statistically quantify the effect of unstable inverse models and describe an approach to experimental design that mitigates its impact.

Wakefields in a cluster plasma

Physical Review Special Topics: Accelerators and Beams American Physical Society 22:11 (2019) 113501

Authors:

M Mayr, L Ceurvorst, M Kasim, J Sadler, B Spiers, K Glize, A Savin, N Bourgeois, F Keeble, A Ross, D Symes, R Aboushelbaya, R Fonseca, J Holloway, N Ratan, R Trines, R Wang, R Bingham, P Burrows, M Wing, R Pattathil, Peter Norreys

Abstract:

We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape of these wakefields is captured for the first time. The wavefronts are observed to curve backwards, in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters, the first wakefield period is longer than those trailing it. The features of the data are well described by fully relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-dimensional, nonlinear wakefield in a cluster plasma.