Bacterial Flagella: Flagellar Motor
Chapter in Encyclopedia of Life Sciences, Wiley (2001)
Abstract:
Abstract The bacterial flagellar motor is a rotary molecular motor situated in the cell envelopes of bacteria that is driven by a flow of charged ions across the bacterial plasma membrane. The motor powers the rotation of helical flagellar filaments so that bacteria swim, frequently towards a more favourable location.Theories of rotary motors
Philosophical Transactions of the Royal Society B Biological Sciences The Royal Society 355:1396 (2000) 503-509
Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity.
Biophys J 78:3 (2000) 1207-1215
Abstract:
Rhodobacter sphaeroides can swim toward a wide range of attractants (a process known as taxis), propelled by a single rotating flagellum. The reversals of motor direction that cause tumbles in Eschericia coli taxis are replaced by brief motor stops, and taxis is controlled by a complex sensory system with multiple homologues of the E. coli sensory proteins. We tethered photosynthetically grown cells of R. sphaeroides by their flagella and measured the response of the flagellar motor to changes in light intensity. The unstimulated bias (probability of not being stopped) was significantly larger than the bias of tethered E. coli but similar to the probability of not tumbling in swimming E. coli. Otherwise, the step and impulse responses were the same as those of tethered E. coli to chemical attractants. This indicates that the single motor and multiple sensory signaling pathways in R. sphaeroides generate the same swimming response as several motors and a single pathway in E. coli, and that the response of the single motor is directly observable in the swimming pattern. Photo-responses were larger in the presence of cyanide or the uncoupler carbonyl cyanide 4-trifluoromethoxyphenylhydrazone (FCCP), consistent with the photo-response being detected via changes in the rate of electron transport.Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity
Biophysical Journal 78:3 (2000) 1207-1215
Abstract:
Rhodobacter sphaeroides can swim toward a wide range of attractants (a process known as taxis), propelled by a single rotating flagellum. The reversals of motor direction that cause tumbles in Eschericia coli taxis are replaced by brief motor stops, and taxis is controlled by a complex sensory system with multiple homologues of the E. coli sensory proteins. We tethered photosynthetically grown cells of R. sphaeroides by their flagella and measured the response of the flagellar motor to changes in light intensity. The unstimulated bias (probability of not being stopped) was significantly larger than the bias of tethered E. coli but similar to the probability of not tumbling in swimming E. coli. Otherwise, the step and impulse responses were the same as those of tethered E. coli to chemical attractants. This indicates that the single motor and multiple sensory signaling pathways in R. sphaeroides generate the same swimming response as several motors and a single pathway in E. coli, and that the response of the single motor is directly observable in the swimming pattern. Photo-responses were larger in the presence of cyanide or the uncoupler carbonyl cyanide 4- trifluoromethoxyphenylhydrazone (FCCP), consistent with the photo-response being detected via changes in the rate of electron transport.Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio
Nature Springer Nature 403:6768 (2000) 444-447