Halide segregation in mixed-halide perovskites: influence of A-site cations

ACS Energy Letters American Chemical Society 6:2 (2021) 799-808

Authors:

Alexander Knight, Anna Juliane Borchert, Robert DJ Oliver, Jay Patel, Paolo G Radaelli, Henry Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer bandgap tunability essential for multijunction solar cells; however, a detrimental halide segregation under light is often observed. Here we combine simultaneous in situ photoluminescence and X-ray diffraction measurements to demonstrate clear differences in compositional and optoelectronic changes associated with halide segregation in MAPb(Br0.5I0.5)3 and FA0.83Cs0.17Pb(Br0.4I0.6)3 films. We report evidence for low-barrier ionic pathways in MAPb(Br0.5I0.5)3, which allow for the rearrangement of halide ions in localized volumes of perovskite without significant compositional changes to the bulk material. In contrast, FA0.83Cs0.17Pb(Br0.4I0.6)3 lacks such low-barrier ionic pathways and is, consequently, more stable against halide segregation. However, under prolonged illumination, it exhibits a considerable ionic rearrangement throughout the bulk material, which may be triggered by an initial demixing of A-site cations, altering the composition of the bulk perovskite and reducing its stability against halide segregation. Our work elucidates links between composition, ionic pathways, and halide segregation, and it facilitates the future engineering of phase-stable mixed-halide perovskites.

Antiferromagnetic half-skyrmions and bimerons at room temperature

University of Oxford (2021)

Abstract:

The datasets included herein contain experimental results (X-ray absorption, dichroic photoemission electron microscopy, diffraction, magnetometry etc.) and related analysis for the investigation of antiferromagnetic topological textures. The processes used in the obtaining, reducing and analysing the datasets can be found in the Methods and Supplementary Information sections of the published manuscript.

Effects of magnetic dilution in the ferrimagnetic columnar ordered Sm2MnMnMn4-xTixO12 perovskites

PHYSICAL REVIEW B 102:21 (2020) ARTN 214428

Authors:

Anuradha M Vibhakar, Dmitry D Khalyavin, Pascal Manuel, Ran Liu, Kazunari Yamaura, Alexei A Belik, Roger D Johnson

Abstract:

© 2020 American Physical Society. Powder neutron-diffraction experiments have been employed to establish the effects of site-selective magnetic dilution in the Sm2MnMnMn4-xTixO12 A-site columnar ordered quadruple perovskite manganites (x=1, x=2, and x=3). We show that in all three compositions the Mn ions adopt a collinear ferrimagnetic structure below 27, 62, and 34 K, respectively. An unexpected increase in the ordering temperature was observed between the x=1 and x=2 samples, which indicates a considerable departure from mean-field behavior. This result is corroborated by large reductions in the theoretical ground-state magnetic moments observed across the series, which indicate the presence of spin fluctuations and/or disorder. We show that long-range magnetic order in the x=3 sample, which occurs below the percolation threshold for B-B exchange, can only be understood to arise if it is mediated via both A-B and B-B exchange, hence confirming the importance of A-B exchange interactions in these materials. Finally, we show that site-selective magnetic dilution enables the tuning of a ferrimagnetic compensation point and the introduction of temperature-induced magnetization reversal.

Author Correction: Polarizing an antiferromagnet by optical engineering of the crystal field

Nature Physics Springer Nature 16:12 (2020) 1238-1238

Authors:

Ankit S Disa, Michael Fechner, Tobia F Nova, Biaolong Liu, Michael Först, Dharmalingam Prabhakaran, Paolo G Radaelli, Andrea Cavalleri

Phase Diagram and Superconducting Dome of Infinite-Layer Nd_{1-x}Sr_{x}NiO_{2} Thin Films.

Physical review letters 125:14 (2020) 147003

Authors:

Shengwei Zeng, Chi Sin Tang, Xinmao Yin, Changjian Li, Mengsha Li, Zhen Huang, Junxiong Hu, Wei Liu, Ganesh Ji Omar, Hariom Jani, Zhi Shiuh Lim, Kun Han, Dongyang Wan, Ping Yang, Stephen John Pennycook, Andrew TS Wee, Ariando Ariando

Abstract:

Infinite-layer Nd_{1-x}Sr_{x}NiO_{2} thin films with Sr doping level x from 0.08 to 0.3 are synthesized and investigated. We find a superconducting dome x between 0.12 and 0.235 accompanied by a weakly insulating behavior in both under- and overdoped regimes. The dome is akin to that in the electron-doped 214-type and infinite-layer cuprate superconductors. For x≥0.18, the normal state Hall coefficient (R_{H}) changes the sign from negative to positive as the temperature decreases. The temperature of the sign changes decreases monotonically with decreasing x from the overdoped side and approaches the superconducting dome at the midpoint, suggesting a reconstruction of the Fermi surface with the dopant concentration across the dome.